1,517
Views
91
CrossRef citations to date
0
Altmetric
Reviews

Rice and Butterfly Wing Effect Inspired Low Drag and Antifouling Surfaces: A Review

&

REFERENCES

  • M. W. Collins and C. A. Brebbia, Eds., Design and Nature II: Comparing Design in Nature with Science and Engineering, WIT Press, Southampton, U.K. (2004).
  • R. L. Reis and S. Weiner, Eds., Learning from Nature How to Design New Implantable Biomaterials, Kluwer Academic Publishers, Norwell, MA (2004).
  • B. Bhushan, Biomimetics: lessons from nature — an overview, Phil. Trans. R. Soc. A. 367, 1445–1486 (2009).
  • B. Bhushan, Springer Handbook of Nanotechnology, 3rd ed., Springer, New York (2010).
  • B. Bhushan, Biomimetics: Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology, Springer-Verlag, Heidelberg, Germany (2012).
  • B. Bhushan, Y. C. Jung, and K. Koch, Self-cleaning efficiency of artificial superhydrophobic surfaces, Langmuir 25, 3240–3248 (2009a).
  • R. Allen, Ed., Bulletproof Feathers How Science Uses Nature's Secrets to Design Cutting Edge Technology, Ivy Press, London, U.K. (2010).
  • R. E. Armstrong, M. D. Drapeau, C. A. Loeb, and J. J. Valdes, Eds., Bio-Inspired Innovation and National Security, National Defense University Press, Washington, D.C. (2010).
  • Y. Bar-Cohen, Biomimetics: Nature Based Innovation, CRC Press, Boca Raton, Florida (2011).
  • S. Vajda, Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications, Halsted Press, New York (1989).
  • M. Livio, The Golden Ratio: The Story of Phi, The World's Most Astonishing Number, Broadway Books, New York (2002).
  • A. S. Posamentier and I. Lehmann, The Fabulous Fibonacci Numbers, Prometheus Books, New York (2007).
  • G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, U.K. (1970).
  • R. D. Blevins, Applied Fluid Dynamics Handbook, Van Nostrand-Reinhold, New York (1984).
  • M. Davies, Ed., Standard Handbook for Aeronautical and Astronautical Engineers, McGraw-Hill, New York (2002).
  • F. White, Viscous Fluid Flow, 3rd ed., McGraw Hill, New York (2006).
  • W. Brostow, Drag reduction in flow: review of applications, mechanism and prediction, J. Indust. Eng. Chem. 14, 408–416 (2008).
  • L. F. Melo, T. R. Bott, and C. A. Bernardo, Eds., Fouling Science and Technology, Kluwer Academic Publishers, Dordrecht, The Netherlands (1988).
  • M. Fingerman, R. Nagabhushanam, and M. F. Thompson, Eds., Recent Advances in Marine Biotechnology, Science Publishers, Inc., Enfield, New Hampshire (1999).
  • J. Walker, S. Surman, and J. Jass, Eds., Industrial Biofouling Detection, Prevention and Control, Wiley, New York (2000).
  • A. I. Railkin, Marine Biofouling Colonization Processes and Defenses, CRC Press, Boca Raton, Florida (2004).
  • B. Bhushan, Y. C. Jung, and K. Koch, Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion, Phil. Trans. Roy. Soc. A 367, 1631–1672 (2009b).
  • C. Hellio and D. Yebra, Eds., Advances in Marine Antifouling Coatings and Technologies, CRC Press, Boca Raton, Florida (2009).
  • B. Bhushan and Y. C. Jung, Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction, Prog. Mater. Sci. 56, 1–108 (2011).
  • G. D. Bixler and B. Bhushan, Biofouling lessons from nature, Phil. Trans. R. Soc. A 370, 2381–2417 (2012a).
  • S. J. Kline, W. C. Reynolds, F. A. Schraub, and P. W. Runstadler, The structure of turbulent boundary layers, J. Fluid Mech. 30, 741–773 (1967).
  • P. Stoodley, K. Sauer, D. G. Davies, and J. W. Costerton, Biofilms as complex differentiated communities, Ann. Rev. Microbiol. 56, 187–209 (2012).
  • T. Vo-Dinh, Ed. Nanotechnology in Biology and Medicine, CRC Press, Boca Raton, Florida (2007).
  • M. J. Schulz, V. N. Shanov, and Y. Yun, Eds., Nanomedicine Design of Particles, Sensors, Motors, Implants, Robots, and Devices, Artech House, Boston (2009).
  • M. Shirtliff and J. G. Leid, Eds., The Role of Biofilms in Device-Related Infections, Springer-Verlag, Berlin (2009).
  • J. Chan and S. Wong, Eds., Biofouling Types, Impact and Anti-Fouling, Nova Science Publishers, New York (2010).
  • E. F. C. Somerscales and J. G. Knudsen, Eds., Fouling of Heat Transfer Equipment, Hemisphere Publishing Corporation, Washington (1981).
  • T. R. Bott, Crystallization of organic materials, in Fouling Science and Technology, L. F. Melo, T. R. Bott, and C. A. Bernardo, Eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 275–280 (1988a).
  • T. R. Bott, Crystallization fouling – basic science and models, in Fouling Science and Technology, L. F. Melo, T. R. Bott, and C. A. Bernardo, Eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 251–260 (1988b).
  • A. M. Pritchard, Deposition of hardness salts, in Fouling Science and Technology, L. F. Melo, T. R. Bott, and C. A. Bernardo, Eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 261–274 (1988).
  • P. R. Viswanath, Aircraft viscous drag reduction using riblets, Prog. Aerospace Sci. 38, 571–600 (2002).
  • A. Sareen, R. W. Deters, S. P. Henry, and M. S. Selig, Drag reduction using riblet film applied to airfoils for wind turbines, Paper # AIAA-2011-558, presented at 49th AIAA Aerospace Sciences Meeting, Orlando, AIAA, New York (2011).
  • Anon, Marine Fouling and its Prevention, Woods Hole Oceanographic Institute, US Naval Institute, Annapolis, Maryland (1952).
  • A. B. Cunningham, J. E. Lennox, and R. J. Ross, Biofilms in industrial environments (2008); retrieved June 27, 2011, from http: //biofilmbook.hypertextbookshop.com/public_version/contents/contents.html
  • G. D. Bixler and B. Bhushan, Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects, Soft Matter 8, 11271–11284 (2012b).
  • L. Cao, A. K. Jones, V. K. Sikka, J. Wu, and D. Gao, Anti-icing superhydrophobic coatings, Langmuir 25, 12444–12448 (2009).
  • A. J. Meuler, J. D. Smith, K. K. Varanasi, J. M. Mabry, G. H. McKinley, and R. E. Cohen, Relationships between water wettability and ice adhesion, ACS Appl. Mat. Interf. 2, 3100–3110 (2010).
  • W. Barthlott and C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta 202, 1–8 (1997).
  • A. Kesel and R. Liedert, Learning from nature: non-toxic biofouling control by shark skin effect, Comp. Biochem. Physiol. A 146, S130 (2007).
  • E. Ralston and G. Swain, Bioinspiration – the solution for biofouling control?, Bioinsp. Biomim. 4, 1–9 (2009).
  • D. W. Bechert, G. Hoppe, and W. E. Reif, On the drag reduction of the shark skin, Paper # AIAA-85-0546, presented at AIAA Shear Flow Control Conference, Boulder, Colorado, AIAA, New York (1985).
  • D. W. Bechert, M. Bruse, W. Hage, J. G. T. van der Hoeven, and G. Hoppe, Experiments on drag reducing surfaces and their optimization with an adjustable geometry, J. Fluid Mech. 338, 59–87 (1997a).
  • D. W. Bechert, M. Bruse, W. Hage, and R. Meyer, Fluid mechanics of biological surfaces and their technological application, Naturwissenschaften 87, 157–171 (2000b).
  • B. Dean and B. Bhushan, Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review, Phil. Trans. R. Soc. A. 368, 4775–4806 (2010).
  • G. D. Bixler and B. Bhushan, Fluid drag reduction with shark-skin riblet inspired microstructured surfaces, Adv. Funct. Mater. 23, 4507–4528 (2013c).
  • W. Reif, Squamation and ecology of sharks, Courier Forschungsinstitut Senckenberg, Frankfurt, Germany, 78, 1–255 (1985).
  • J. F. Schumacher, N. Aldred, M. E. Callow, J. A. Finlay, J. A. Callow, A. S. Clare, and A. B. Brennan, Species-specific engineered antifouling topographies: correlations between the settlement of algal zoospores and barnacle cyprids, Biofouling 23, 307–317 (2007a).
  • J. F. Schumacher, M. L. Carman, T. G. Estes, A. W. Feinberg, L. H. Wilson, M. E. Callow, J. A. Callow, J. A. Finlay, and A. B. Brennan, Engineered antifouling microtopographies – effect of feature size, geometry, and roughness on settlement of zoospore of the green alga Ulva, Biofouling 23(1), 55–62 (2007b).
  • A. J. Scardino, Surface modification approaches to control marine biofouling, in Advances in Marine Antifouling Coatings and Technologies, C. Hellio and D. Yebra, Eds., CRC Press, Boca Raton, Florida, pp. 664–692 (2009).
  • A. B. Brennan, R. H. Baney, M. I. Carman, T. G. Estes, A. W. Feinberg, L. H. Wilson, and J. F. Schumacher, Surface topographies for non-toxic bioadhesion control, United States Patent no. 7, 650–848 (2010).
  • G. D. Bixler and B. Bhushan, Bioinspired micro/nanostructured surfaces for oil drag reduction in closed channel flow, Soft Matter 9, 1620–1635 (2013a).
  • G. D. Bixler and B. Bhushan, Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces, Nanoscale 5, 7685–7710 (2013d).
  • G. D. Bixler and B. Bhushan, Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow, Nanoscale 6, 76–96 (2014).
  • G. D. Bixler, A. Theiss, B. Bhushan, and S. C. Lee, Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings, J. Colloid Interf. Sci. 419, 114–133 (2014).
  • F. J. Marentic and T. L. Morris, Drag reduction article, United States Patent no. 5 133 516 (1992).
  • K. Krieger, Do pool sharks really swim faster?, Science 305, 636–637 (2004).
  • M. L. Carman, T. G. Estes, A. W. Feinburg, J. F. Schumacher, W. Wilkerson, L. H. Wilson, M. E. Callow, J. A. Callow, and A. B. Brennan, Engineered antifouling microtopographies—correlating wettability with cell attachment, Biofouling 22, 11–21 (2006).
  • K. LoVetri, P. V. Gawande, N. Yakandawala, and S. Madhyastha, Biofouling and anti-fouling of medical devices, in Biofouling Types, Impact and Anti-Fouling, J. Chan and S. Wong, Eds., Nova Science Publishers, New York, pp. 105–128 (2010).
  • N. Dror, M. Mandel, Z. Hazan, and G. Lavie, Advances in microbial biofilm prevention on indwelling medical devices with emphasis on usage of acoustic energy, Sensors 9, 2538–2554 (2009).
  • M. E. Callow, The status and future of biocides in marine biofouling prevention, in Recent Advances in Marine Biotechnology, M. Fingerman, R. Nagabhushanam, and M. F. Thompson, Eds., Science Publishers, Enfield, New Hampshire, pp. 109–126 (1999).
  • S. H. Kim, S. Y. Kwak, B. H. Sohn, and T. H. Park, Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem, J. Membrane Sci. 211, 157–165 (2003).
  • K. Zodrow, L. Brunet, S. Mahendra, D. Li, and A. Zhang, Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal, Water Res. 43, 715–723 (2009).
  • C. P. Cologer, Six year interaction of underwater cleaning with copper based antifouling paints on navy surface ships, Nav. Eng. J. 96, 200–208 (1984).
  • N. Sharma, C. H. Charles, M. C. Lynch, J. Qaqish, J. A. McGuire, J. G. Galustians, and L. D. Kumar, Adjunctive benefit of an essential oil-containing mouth rinse in reducing plaque and gingivitis in patients who brush and floss regularly, J. Amer. Dent. Assoc. 135, 496–504 (2004).
  • G. D. Bixler. and B. Bhushan, Shark skin inspired low-drag microstructured surfaces in closed channel flow, J. Colloid Interf. Sci. 393, 384–396 (2013b).
  • L. Lin, C. J. Chiu, W. Bacher, and M. Heckele, Microfabrication using silicon mold inserts and hot embossing, Paper # 0-7803-3596-1/96, presented at 7th International Symposium on Micro Machine and Human Science, IEEE, New York (1996).
  • L. Lin, Y. T. Cheng, and C. J. Chiu, Comparative study of hot embossed micro structures fabricated by laboratory and commercial environments, Microsyst. Technol. 4, 113–116 (1998).
  • T. Velten, F. Bauerfeld, H. Schuck, S. Scherbaum, C. Landesberger, and K. Bock, Roll-to-roll hot embossing of microstructures, Paper # 978-2-35500-011-9, presented at DTIP, Seville, Spain, EDA Publishing (2010).
  • L. J. Kricka, P. Fortina, N. J. Panaro, P. Wilding, G. Alonso-Amigo, and H. Becker, Fabrication of plastic microchips by hot embossing, Lab Chip 2, 1–4 (2002).
  • T. Mappes, M. Worgull, M. Heckele, and J. Mohr, Submicron polymer structures with X-ray lithographic and hot embossing, Microsyst. Technol. 14, 1721–1725 (2008).
  • S. Amaya, D. V. Dao, and S. Sugiyama, Study on an efficient fabrication process for PMMA moveable microstructures based on hot embossing and polishing process, Paper # 978-1-4244-5095-4/09, IEEE, New York (2009).
  • A. Mathur, S. S. Roy, M. Tweedie, S. Mukhopadhyay, S. K. Mitra, and J. A. McLaughlin, Characterization of PMMA microfluidic channels and devices fabricated by hot embossing and sealed by direct bonding, Curr. Appl. Phys. 9, 1199–1202 (2009).
  • J. Mizuno, T. Harada, T. Glinsner, M. Ishizuka, T. Edura, K. Tsutsui, H. Ishida, S. Shoji, and Y. Wada, Fabrications of micro-channel device by hot emboss and direct bonding of PMMA, Proc. IEEE ICMENS (Banff, Canada, 25–27 Aug.), 26–29 (2004).
  • J. Narasimhan and I. Papautsky, Polymer embossing tools for rapid prototyping of plastic microfluidic devices, J. Micromech. Microeng. 14, 96–103 (2004).
  • N. Roos, T. Luxbacher, T. Glinsner, K. Pfeiffer, H. Schulz, and H. C. Scheer, Nanoimprinting lithography with a commercial 4 inch bond system for hot embossing, Proc. SPIE, 4343, 427–435 ( 1001).
  • R. W. Fox and A. T. McDonald, Introduction to Fluid Mechanics, Wiley, New York (1998).
  • D. Monroe, Looking for chinks in the armor of bacterial biofilms, PLoS Biol 5, 2458–2461 (2007).
  • J. W. Costerton, Ed.. Springer Series on Biofilms, Springer-Verlag, Berlin (2008).
  • T. J. Marrie and J. W. Costerton, Morphology of bacterial attachment to cardiac pacemaker leads and power packs, J. Clin. Microbiol. 19, 911–914 (1984).
  • C. W. Keevil, A. Godfree, D. Holt, and C. Dow, Eds., Biofilms in the Aquatic Environment, The Royal Society of Chemistry, Cambridge, UK (1999).
  • H. C. Flemming, U. Szewzyk, and T. Griebe, Eds., Biofilms Investigative Methods and Applications, Technomic Publishing Co., Lancaster, Pennsylvania (2000).
  • M. Simoes, L. C. Simoes, and M. J. Vieira, A review of current and emergent biofilm control strategies, LWT – Food Sci. Technol. 43, 573–583 (2010).
  • A. Trinidad, A. Ibanez, D. Gomez, J. R. Garcia-Berrocal, and R. Ramierz-Camacho, Application of environmental scanning electron microscopy for study of biofilms in medical devices, Microsc. Sci. Technol. Applic. Educ. 1, 204–210 (2010).
  • M. E. Callow, R. A. Pitchers, and A. Milne, The control of fouling by non-biocidal systems, in Algal Biofouling, L. V. Evans and K. D. Hoagland, Eds., Elsevier Science Publishers, Amsterdam, pp. 145–158 (1986).
  • X. Feng and L. Jiang, Design and creation of superwetting/antiwetting surfaces, Adv. Mater. 18, 3063–3078 (2006).
  • K. Koch and W. Barthlott, Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials, Phil. Trans. Roy. Soc. 367, 1487–1509 (2009).
  • X. Sheng, Y. P. Ting, and S. O. Pehkonen, Force measurements of bacterial adhesion to metals using cell probe in atomic force microscopy, in Biofouling Types, Impact and Anti-Fouling, J. Chan and S. Wong, Eds., Nova Science Publishers, New York, pp. 129–154 (2010).
  • N. Epstein, Particulate fouling of heat transfer surfaces: mechanisms and models, in Fouling Science and Technology, L. F. Melo, T. R. Bott, and C. A. Bernardo, Eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 143–164 (1988).
  • W. Li and A. Amirfazli, Microtextured superhydrophobic surfaces: a thermodynamic analysis, Adv. Colloid Interf. Sci. 132, 51–68 (2007).
  • T.-S. Wong, S. H. Kang, S. K. Y. Tang, E. J. Smythe, B. D. Hatton, A. Grinthal, and J. Aizenberg, Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity, Nature 477, 443–447 (2011).
  • S. Nishimoto and B. Bhushan, Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity, RSC Adv. 3, 671–690 (2013).
  • M. Nosonovsky and B. Bhushan, Multiscale Dissipative Mechanisms and Hierarchical Surfaces, Springer, New York (2008).
  • J. N. Israelachvili, Intermolecular and Surface Forces, 2nd ed., Academic Press, London (1992).
  • Y. C. Jung and B. Bhushan, Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity, Langmuir 25(24), 14165–14173 (2009).
  • M. Liu, S. Wang, Z. Wei, Y. Song, and L. Jiang, Bioinspired design of a superoleophobic and low adhesive water/solid interface, Adv. Mater. 21, 665–669 (2009).
  • J. Ou, B. Perot, and J. P. Rothstein, Laminar drag reduction in microchannels using ultrahydrophobic surfaces, Phys. Fluids 16, 4635–4643 (2004).
  • Y. C. Jung and B. Bhushan, Biomimetic structures for fluid drag reduction in laminar and turbulent flows, J. Phys. Condens. Matter 22, 1–9 (2010).
  • R. J. Daniello, N. E. Waterhouse, and J. P. Rothstein, Drag reduction in turbulent flows over superhydrophobic surfaces, Phys. of Fluids 21, 085103
  • M. B. Martell, J. B. Perot, and J. P. Rothstein, Direct numerical simulations of turbulent flows over drag-reducing ultrahydrophobic surfaces, J. Fluid Mechan. 620, 31–41 (2009).
  • M. B. Martell, J. P. Rothstein, and J. B. Perot, An analysis of superhydrophobic turbulent drag reduction mechanisms using direct numerical simulation, Phys. Fluids 22, 065102 (2010).
  • D. W. Bechert, M. Bruse, W. Hage, and R. Meyer, Biological surfaces and their technological application – laboratory and flight experiments on drag reduction and separation control, Paper # AIAA-1997-1960, presented at AIAA 28th Fluid Dynamics Conference, Snowmass Village, Colorado, AIAA, New York (1997b).
  • D. W. Bechert, M. Bruse, and W. Hage, Experiments with three-dimensional riblets as an idealized model of shark skin, Exp. Fluids 28, 403–412 (2000a).
  • S. J. Lee and S. H. Lee, Flow field analysis of a turbulent boundary layer over a riblet surface, Exp. Fluids 30, 153–166 (2001).
  • Z. Deyuan, L. Yuehao, L. Xiang, and C. Huawei, Numerical simulation and experimental study of drag-reducing surface of a real shark skin, J. Hydrodyn. 23, 204–211 (2011b).
  • Z. Deyuan, L. Yuehao, C. Huawei, and J. Xinggang, Exploring drag-reducing grooved internal coating for gas pipelines, Pipeline Gas J. 59–60 (2011a).
  • J. Oeffner and G. V. Lauder, The hydrodynamic function of shark skin and two biomimetic applications, J. Exp. Biol. 215, 785–795 (2012).
  • K. Liu and L. Jiang, Bio-inspired designed of multiscale structures for function integration, Nano Today 6, 155–175 (2011).
  • T. Wagner, C. Neinhuis, and W. Barthlott, Wettability and contaminability of insect wings as a function of their surface sculptures, Acta Zoologica 77, 213–225 (1996).
  • J. C. O’Toole, R. T. Cruz, and J. N. Seiber, Epicuticular wax and cuticular resistance in rice, Physiol. Plant 47, 239–244 (1979).
  • L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu, Super-Hydrophobic surfaces: from natural to artificial, Adv. Mater. 14, 1857–1860 (2002).
  • T. Sun, L. Feng, X. Gao, and L. Jiang, Bioinspired surfaces with special wettability, Acc. Chem. Res. 38, 644–652 (2005).
  • Z. Guo and W. Liu, Biomimic from the superhydrophobic plant leaves in nature: binary structure and unitary structure, Plant Sci. 172, 1103–1112 (2007).
  • Y. Zheng, X. Gao, and L. Jiang, Directional adhesion of superhydrophobic butterfly wings, Soft Matt. 3, 178–182 (2007).
  • P. P. Goodwyn, Y. Maezono, N. Hosoda, and K. Fujisaki, Waterproof and translucent wings at the same time: problems and solutions in butterflies, Naturwissenschaften 96, 781–787 (2009).
  • O. Sato, S. Kubo, and Z. Z. Gu, Structural color films with lotus effects, superhydrophilicity, and tunable stop-bands, Acc. Chem. Res. 42, 1–10 (2009).
  • J. Genzer and K. Efimenko, Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review, Biofouling 22, 339–360 (2006).
  • D. Ebert and B. Bhushan, Wear-resistant rose petal-effect surfaces with superhydrophobicity and high droplet adhesion using hydrophobic and hydrophilic nanoparticles, J. Colloid Interf. Sci. 384, 182–188 (2012a).
  • D. Ebert and B. Bhushan, Transparent, superhydrophobic, and wear-resistant coatings on glass and polymer substrates using SiO2, ZnO, and ITO nanoparticles, Langmuir 28, 11391–11399 (2012b).
  • D. W. Bechert, G. Hoppe, J. G. T. van der Hoeven, and R. Makris, The Berlin oil channel for drag reduction research, Exp. Fluids 12, 251–260 (1992).
  • M. E. Callow and J. A. Callow, Marine biofouling: a sticky problem, Biologist 49, 1–5 (2002).
  • J. A. Finlay, M. E. Callow, M. P. Schultz, G. W. Swain, and J. A. Callow, Adhesion strength of settled spores of the green alga enteromorpha, Biofouling 18, 251–256 (2002).
  • I. Banerjee, R. C. Pangule, and R. S. Kane, Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms, Adv. Mater. 23, 690–718 (2011).
  • H. Ma, C. N. Bowman, and R. H. Davis, Membrane fouling reduction by backpulsing and surface modification, J. Membrane Sci 173, 191–200 (2000).
  • J. T. Fletcher, J. A. Finlay, M. E. Callow, J. A. Callow, and M. R. Ghadiri, A combinatorial approach to the discovery of biocid al six-residue cyclicd,l-a-peptides against the bacteria methicillin-resistant staphylococcusaureus (MRSA) and E. coli and the biofouling algae ulva linza and navicula perminuta, Chem. Eur. J. 13, 4008–4013 (2007).
  • D. R. Lide, Ed., CRC Handbook of Chemistry and Physics, 90th ed., CRC Press, Boca Raton, Florida (2009).
  • K. Koch, B. Bhushan, Y. C. Jung, and W. Barthlott, Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion, Soft Matter 5, 1386–13930 (2009).
  • J. Hunt and B. Bhushan, Nanoscale biomimetics studies of Salvinia molesta for micropattern fabrication, J. Colloid Interf. Sci. 363, 187–192 (2011).
  • G. Edgar, Australian Marine Life: The Plants and Animals of Temperate Waters, Reed Books, Victoria (1997).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.