1,003
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Imprints of interfaces in thermoelectric materials

ORCID Icon
Pages 361-410 | Published online: 25 Mar 2022
 

Abstract

Contemporary thermoelectric literature is rife with material structure-related terminologies like interfaces and grain boundaries, signaling the significance of these structures. Interfaces decide the characteristics of electronic and thermal transport and mechanical properties of polycrystalline and nano thermoelectric (TE) materials. Understanding the relationship between grain boundaries/interphase boundaries and property connections in materials is a key component of material design with desired characteristics and performance. It is now widely recognized that the microstructure of materials is intimately connected to their bulk properties. Accordingly, microstructure control and interface manipulation have emerged as critical topics in the field of materials science and engineering, particularly in thermoelectrics. This paper narrates recent breakthroughs in high-performance TE material design from the standpoints of interface structure and grain boundary manipulation. First, it provides a glimpse of strategies for thermal conductivity reduction through nano and microstructure control, embedded nanoinclusions, grain size reduction, and all-scale hierarchical architectures. It then deliberates on electron and phonon transport decoupling via coherent interfaces, matrix/precipitate electronic band alignment, and charge carrier filtering effects. It proceeds to review the recent results on TE properties of materials prepared with aforementioned strategies emphasizing Bi2(Te,Se)3 and (Bi,Sb)2Te3, SnSe, SnTe, Cu2Se, skutterudides, PbTe-based compounds, GeTe, polymer TE composites, and other materials. At the end, possible strategies for further enhancing zT are addressed.

Graphical Abstract

Declaration

Data sharing is not applicable to this publication.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 526.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.