1,003
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Imprints of interfaces in thermoelectric materials

ORCID Icon

References

  • Bell, L. E. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science. 2008, 321, 1457–1461. doi:10.1126/science.1158899
  • Mao, J.; Chen, G.; Ren, Z. Thermoelectric Cooling Materials. Nat. Mater. 2021, 20, 454–461. doi:10.1038/s41563-020-00852-w
  • Xu, S.; Shi, X. L.; Dargusch, M.; Di, C.; Zou, J.; Chen, Z. G. Conducting Polymer-Based Flexible Thermoelectric Materials and Devices: From Mechanisms to Applications. Prog. Mater Sci 2021, 121, 100840, 10.1016/j.pmatsci.2021.100840.
  • Xu, S.; Hong, M.; Li, M.; Sun, Q.; Yin, Y.; Liu, W.; Shi, X.; Dargusch, M.; Zou, J.; Chen, Z. G. Two-Dimensional Flexible Thermoelectric Devices: Using Modeling to Deliver Optimal Capability. Appl. Phys. Rev 2021, 8, 041404. doi:10.1063/5.0067930
  • Tarancon, A. Powering the IoT Revolution with Heat. Nat. Electron 2019, 2, 270–271. doi:10.1038/s41928-019-0276-4.
  • Hu, G.; Edwards, H.; Lee, M. Silicon Integrated Circuit Thermoelectric Generators with a High Specific Power Generation Capacity. Nat. Electron. 2019, 2, 300–306. doi:10.1038/s41928-019-0271-9
  • Nandihalli, N.; Liu, C. J.; Mori, T. Polymer Based Thermoelectric Nanocomposite Materials and Devices: Fabrication and Characteristics. Nano Energy 2020, 78, 105186. doi:10.1016/j.nanoen.2020.105186
  • Cao, T.; Shi, X. L.; Zou, J.; Chen, Z. G. Advances in Conducting Polymer-Based Thermoelectric Materials and Devices. Microstructures 2021, 1, 1–33. doi:10.20517/microstructures.2021.06.
  • Sharp, J.; Bierschenk, J.; Lyon, H. B. Overview of Solid-State Thermoelectric Refrigerators and Possible Applications to on-Chip Thermal Management. Proc. IEEE 2006, 94, 1602–1612. doi:10.1109/JPROC.2006.879795
  • Chen, W. Y.; Shi, X. L.; Zou, J.; Chen, Z. G. Thermoelectric Coolers: Progress, Challenges, and Opportunities. Small Methods 2022, 6, 2101235. doi:10.1002/smtd.202101235.
  • Wang, P.; Yang, B.; Bar-Cohen, A. Mini-Contact Enhanced Thermoelectric Coolers for on-Chip Hot Spot Cooling. Heat Transfer Eng. 2009, 30, 736–743. doi:10.1080/01457630802678391
  • Cutler, M.; Leavy, J. F.; Fitzpatrick, R. L. Electronic Transport in Semimetallic Cerium Sulfide. Phys. Rev. 1964, 133, A1143–A1152. doi:10.1103/PhysRev.133.A1143
  • Nolas, G. S.; Morelli, D. T.; Tritt, T. M. Skutterudites: A Phonon-Glass-Electron Crystal Approach to Advanced Thermoelectric Energy Conversion Applications. Annu. Rev. Mater. Sci. 1999, 29, 89–116. doi:10.1146/annurev.matsci.29.1.89
  • Rowe, D. M. CRC Handbook of Thermoelectrics. CRC Press, Boca Raton, FL, 2018.
  • Dresselhaus, M. S.; Dresselhaus, G.; Sun, X.; Zhang, Z.; Cronin, S. B.; Koga, T.; Ying, J. Y.; Chen, G. The Promise of Low-Dimensional Thermoelectric Materials. Microscale Thermophys. Eng. 1999, 3, 89–100. doi:10.1080/108939599199774.
  • Mori, T. Novel Principles and Nanostructuring Methods for Enhanced Thermoelectrics. Small 2017, 13, 1702013. doi:10.1002/smll.201702013.
  • Sharp, J. W.; Poon, S. J.; Goldsmid, H. J. Boundary Scattering and the Thermoelectric Figure of Merit. Phys. Stat. Sol. (a) 2001, 187, 507–516. doi:10.1002/1521-396X(200110)187:2<507::AID-PSSA507>3.0.CO;2-M
  • Bharti, M.; Singh, A.; Samanta, S.; Aswal, D. Conductive Polymers for Thermoelectric Power Generation. Prog. Mater Sci 2018, 93, 270–310. doi:10.1016/j.pmatsci.2017.09.004
  • Wang, Y.; Hong, M.; Liu, W. D.; Shi, X. L.; Xu, S. D.; Sun, Q.; Gao, H.; Lu, S.; Zou, J.; Chen, Z. G. Bi0.5Sb1.5Te3/PEDOT: PSS-Based Flexible Thermoelectric Film and Device. Chem. Eng. J. 2020, 397, 125360. doi:10.1016/j.cej.2020.125360
  • Shi, X. L.; Chen, W. Y.; Zhang, T.; Zou, J.; Chen, Z. G. Fiber-Based Thermoelectrics for Solid, Portable, and Wearable Electronics. Energy Environ. Sci. 2021, 14, 729–764. doi:10.1039/D0EE03520C
  • Witting, I. T.; Chasapis, T. C.; Ricci, F.; Peters, M.; Heinz, N. A.; Hautier, G.; Snyder, G. J. The Thermoelectric Properties of Bismuth Telluride. Adv. Electron. Mater. 2019, 5, 1800904. doi:10.1002/aelm.201800904
  • Y. Pan, J.F. Li, Bismuth telluride, in: R. Funahashi (Ed.), Thermoelectric Energy Conversion. Theories and Mechanisms, Materials, Devices, and Applications, Woodhead Publishing 2021, pp. 45-67.
  • Goldsmid, H. J. Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation. Materials (Basel). 2014, 7, 2577–2592. doi:10.3390/ma7042577
  • Finefrock, S. W.; Yang, H.; Fang, H.; Wu, Y. Thermoelectric Properties of Solution Synthesized Nanostructured Materials. Annu. Rev. Chem. Biomol. Eng. 2015, 6, 247–266. doi:10.1146/annurev-chembioeng-061114-123348
  • Rogl, G.; Rogl, P. Skutterudites, a Most Promising Group of Thermoelectric Materials. Curr. Opin. Green Sustainable Chem. 2017, 4, 50–57. doi:10.1016/j.cogsc.2017.02.006
  • Zong, P. A.; Hanus, R.; Dylla, M.; Tang, Y.; Liao, J.; Zhang, Q.; Snyder, G. J.; Chen, L. Skutterudite with Graphene-Modified Grain-Boundary Complexion Enhances zT Enabling High-Efficiency Thermoelectric Device. Energy Environ. Sci. 2017, 10, 183–191. doi:10.1039/C6EE02467J
  • Guo, L.; Wang, G.; Peng, K.; Yan, Y.; Tang, X.; Zeng, M.; Dai, J.; Wang, G.; Zhou, X. Melt Spinning Synthesis of p-Type Skutterudites: Drastically Speed up the Process of High Performance Thermoelectrics. Scr. Mater 2016, 116, 26–30. doi:10.1016/j.scriptamat.2016.01.035
  • Shi, W.; Gao, M.; Wei, J.; Gao, J.; Fan, C.; Ashalley, E.; Li, H.; Wang, Z. Tin Selenide (SnSe): Growth, Properties, and Applications. Adv. Sci. 2018, 5, 1700602. doi:10.1002/advs.201700602
  • Zhou, C.; Lee, Y. K.; Yu, Y.; Byun, S.; Luo, Z.-Z.; Lee, H.; Ge, B.; Lee, Y.-L.; Chen, X.; Lee, J. Y.; et al. Polycrystalline SnSe with a Thermoelectric Figure of Merit Greater than the Single Crystal. Nat. Mater. 2021, 20, 1378–1384. doi:10.1038/s41563-021-01064-6
  • Lou, X.; Li, S.; Chen, X.; Zhang, Q.; Deng, H.; Zhang, J.; Li, D.; Zhang, X.; Zhang, Y.; Zeng, H.; Tang, G. Lattice Strain Leads to High Thermoelectric Performance in Polycrystalline SnSe. ACS Nano. 2021, 15, 8204–8215. doi:10.1021/acsnano.1c01469
  • Shi, X.; Wu, A.; Liu, W.; Moshwan, R.; Wang, Y.; Chen, Z. G.; Zou, J. Polycrystalline SnSe with Extraordinary Thermoelectric Property via Nanoporous Design. ACS Nano. 2018, 12, 11417–11425. doi:10.1021/acsnano.8b06387
  • Liu, H.; Yuan, X.; Lu, P.; Shi, X.; Xu, F.; He, Y.; Tang, Y.; Bai, S.; Zhang, W.; Chen, L.; et al. Ultrahigh Thermoelectric Performance by Electron and Phonon Critical Scattering in Cu2 Se1-x Ix. Adv. Mater. 2013, 25, 6607–6612. doi:10.1002/adma.201302660
  • Nunna, R.; Qiu, P.; Yin, M.; Chen, H.; Hanus, R.; Song, Q.; Zhang, T.; Chou, M.-Y.; Agne, M. T.; He, J.; et al. Ultrahigh Thermoelectric Performance in Cu2Se-Based Hybrid Materials with Highly Dispersed Molecular CNTs. Energy Environ. Sci. 2017, 10, 1928–1935. doi:10.1039/C7EE01737E
  • Peng, P.; Gong, Z. N.; Liu, F. S.; Huang, M. J.; Ao, W. Q.; Li, Y.; Li, J. Q. Structure and Thermoelectric Performance of β-Cu2Se Doped with Fe, Ni, Mn. In, Zn or Sm. Intermetallics 2016, 75, 72–78. doi:10.1016/j.intermet.2016.05.012
  • Li, M.; Cortie, D. L.; Liu, J.; Yu, D.; Islam, S. M. K. N.; Zhao, L.; Mitchell, D. R. G.; Mole, R. A.; Cortie, M. B.; Dou, S.; Wang, X. Ultra-High Thermoelectric Performance in Graphene Incorporated Cu2Se: Role of Mismatching Phonon Modes. Nano Energy 2018, 53, 993–1002. doi:10.1016/j.nanoen.2018.09.041
  • Sharma, P. K.; Senguttuvan, T. D.; Sharma, V. K.; Chaudhary, S. Revisiting the Thermoelectric Properties of Lead Telluride. Mater. Today Energy 2021, 21, 100713. doi:10.1016/j.mtener.2021.100713
  • Nandihalli, N.; Pai, Y. H.; Liu, C. J. Thermoelectric Properties of Pb0.833Na0.017(Zn0.85Al0.15)0.15Te-Te Composite. Ceram. Int. 2020, 46, 18683–18689. doi:10.1016/j.ceramint.2020.04.182
  • Xiao, Y.; Zhao, L. D. Charge and Phonon Transport in PbTe-Based Thermoelectric Materials. Npj Quantum Mater. 2018, 3, 1–12. doi:10.1038/s41535-018-0127-y.
  • Boschker, J. E.; Wang, R.; Calarco, R. GeTe: A Simple Compound Blessed with a Plethora of Properties. CrystEngComm 2017, 19, 5324–5335. doi:10.1039/C7CE01040K
  • Levin, E. M.; Besser, M. F.; Hanus, R. Electronic and Thermal Transport in GeTe: A Versatile Base for Thermoelectric Materials. J. Appl. Phys. 2013, 114, 083713. doi:10.1063/1.4819222
  • Liu, Z.; Sun, J.; Mao, J.; Zhu, H.; Ren, W.; Zhou, J.; Wang, Z.; Singh, D. J.; Sui, J.; Chu, C.-W.; Ren, Z. Phase-Transition Temperature Suppression to Achieve Cubic GeTe and High Thermoelectric Performance by Bi and Mn Codoping. Proc Natl Acad Sci U S A. 2018, 115, 5332–5337. doi:10.1073/pnas.1802020115
  • Li, J.; Xie, Y.; Zhang, C.; Ma, K.; Liu, F.; Ao, W.; Li, Y.; Zhang, C. Stacking Fault-Induced Minimized Lattice Thermal Conductivity in the High-Performance GeTe-Based Thermoelectric Materials upon Bi2Te3 Alloying. ACS Appl Mater Interfaces. 2019, 11, 20064–20072. doi:10.1021/acsami.9b04984
  • Hong, M.; Zou, J.; Chen, Z. G. Thermoelectric GeTe with Diverse Degrees of Freedom Having Secured Superhigh Performance. Adv. Mater. 2019, 31, 1807071. doi:10.1002/adma.201807071
  • Li, J.; Chen, Z.; Zhang, X.; Sun, Y.; Yang, J.; Pei, Y. Electronic Origin of the High Thermoelectric Performance of GeTe among the p-Type Group IV Monotellurides. NPG Asia Mater. 2017, 9, e353–e353. doi:10.1038/am.2017.8
  • Li, W.; Zheng, L.; Ge, B.; Lin, S.; Zhang, X.; Chen, Z.; Chang, Y.; Pei, Y. Promoting SnTe as an Eco‐Friendly Solution for p‐PbTe Thermoelectric via Band Convergence and Interstitial Defects. Adv. Mater. 2017, 29, 1605887. doi:10.1002/adma.201605887
  • Pei, Y.; Zheng, L.; Li, W.; Lin, S.; Chen, Z.; Wang, Y.; Xu, X.; Yu, H.; Chen, Y.; Ge, B. Interstitial Point Defect Scattering Contributing to High Thermoelectric Performance in SnTe. Adv. Electron. Mater. 2016, 2, 1600019. doi:10.1002/aelm.201600019
  • Dubey, N.; Leclerc, M. Conducting Polymers: efficient Thermoelectric Materials. J. Polym. Sci. B Polym. Phys. 2011, 49, 467–475. doi:10.1002/polb.22206
  • Qiu, B.; Bao, H.; Ruan, X.; Zhang, G.; Wu, Y. Molecular Dynamics Simulations of Lattice Thermal Conductivity and Spectral Phonon Mean Free Path of PbTe: Bulk and Nanostructures. In Heat Transfer Summer Conference, American Society of Mechanical Engineers, 2012, 659–670.
  • Yang, J.; Xi, L.; Qiu, W.; Wu, L.; Shi, X.; Chen, L.; Yang, J.; Zhang, W.; Uher, C.; Singh, D. J. On the Tuning of Electrical and Thermal Transport in Thermoelectrics: An Integrated Theory–Experiment Perspective. Npj Comput. Mater 2016, 2, 1–17. doi:10.1038/npjcompumats.2015.15.
  • Klemens, P. G. Thermal Resistance Due to Point Defects at High Temperatures. Phys. Rev. 1960, 119, 507–509. doi:10.1103/PhysRev.119.507
  • Callaway, J. Model for Lattice Thermal Conductivity at Low Temperatures. Phys. Rev. 1959, 113, 1046–1051. doi:10.1103/PhysRev.113.1046
  • Yao, W.; Yang, D.; Yan, Y.; Peng, K.; Zhan, H.; Liu, A.; Lu, X.; Wang, G.; Zhou, X. Synergistic Strategy to Enhance the Thermoelectric Properties of CoSbS1-xSex Compounds via Solid Solution. ACS Appl Mater Interfaces 2017, 9, 10595–10601. doi:10.1021/acsami.6b12796
  • Xing, T.; Zhu, C.; Song, Q.; Huang, H.; Xiao, J.; Ren, D.; Shi, M.; Qiu, P.; Shi, X.; Xu, F.; Chen, L. Ultralow Lattice Thermal Conductivity and Superhigh Thermoelectric Figure‐of‐Merit in (Mg, Bi) Co‐Doped GeTe. Adv. Mater. 2021, 33, 2008773. doi:10.1002/adma.202008773
  • Zhou, J.; Wu, Y.; Chen, Z.; Nan, P.; Ge, B.; Li, W.; Pei, Y. Manipulation of Defects for High‐Performance Thermoelectric PbTe‐Based Alloys. Small Struct 2021, 2, 2100016. doi:10.1002/sstr.202100016
  • Yan, X.; Liu, W.; Wang, H.; Chen, S.; Shiomi, J.; Esfarjani, K.; Wang, H.; Wang, D.; Chen, G.; Ren, Z. Stronger Phonon Scattering by Larger Differences in Atomic Mass and Size in p-Type half-Heuslers Hf1−xTix CoSb0.8Sn0.2. Energy Environ. Sci. 2012, 5, 7543–7548. doi:10.1039/c2ee21554c
  • Jeong, H.; Kihoi, S. K.; Kahiu, J. N.; Kim, H.; Ryu, J.; Lee, K. H.; Yi, S.; Lee, H. S. Origin of Low Thermal Conductivity in Nb1-xTixFe1.02Sb half-Heusler Thermoelectric Materials. J. Eur. Ceram. Soc 2021, 41, 4175–4181. doi:10.1016/j.jeurceramsoc.2021.02.028
  • Li, W.; Lin, S.; Zhang, X.; Chen, Z.; Xu, X.; Pei, Y. Thermoelectric Properties of Cu2SnSe4 with Intrinsic Vacancy. Chem. Mater. 2016, 28, 6227–6232. doi:10.1021/acs.chemmater.6b02416
  • Plirdpring, T.; Kurosaki, K.; Kosuga, A.; Ishimaru, M.; Harnwunggmoung, A.; Sugahara, T.; Ohishi, Y.; Muta, H.; Yamanaka, S. Effect of the Amount of Vacancies on the Thermoelectric Properties of Cu–Ga–Te Ternary Compounds. Mater. Trans. 2012, 1204161612–1204161612. doi:10.2320/matertrans.E-M2012810.
  • Shen, J.; Zhang, X.; Lin, S.; Li, J.; Chen, Z.; Li, W.; Pei, Y. Vacancy Scattering for Enhancing the Thermoelectric Performance of CuGaTe2 Solid Solutions. J. Mater. Chem. A. 2016, 4, 15464–15470. doi:10.1039/C6TA06033A
  • Wu, Z.; Li, J.; Li, X.; Zhu, M.; Wu, K. C.; Tao, X. T.; Huang, B. B.; Xia, S. Q. Tuning the Thermoelectric Properties of Ca9Zn4+xSb9 by Controlled Doping on the Interstitial Structure. Chem. Mater. 2016, 28, 6917–6924. doi:10.1021/acs.chemmater.6b02498
  • Hu, L.; Wu, H.; Zhu, T.; Fu, C.; He, J.; Ying, P.; Zhao, X. Tuning Multiscale Microstructures to Enhance Thermoelectric Performance of n‐Type Bismuth‐Telluride‐Based Solid Solutions. Adv. Energy Mater. 2015, 5, 1500411. doi:10.1002/aenm.201500411
  • Kim, S. I.; Lee, K. H.; Mun, H. A.; Kim, H. S.; Hwang, S. W.; Roh, J. W.; Yang, D. J.; Shin, W. H.; Li, X. S.; Lee, Y. H.; et al. Thermoelectrics. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics . Science. 2015, 348, 109–114. doi:10.1126/science.aaa4166
  • Xin, J.; Wu, H.; Liu, X.; Zhu, T.; Yu, G.; Zhao, X. Mg Vacancy and Dislocation Strains as Strong Phonon Scatterers in Mg2Si1−xSbx Thermoelectric Materials. Nano Energy. 2017, 34, 428–436. doi:10.1016/j.nanoen.2017.03.012
  • Pei, Y.; May, A. F.; Snyder, G. J. Self‐Tuning the Carrier Concentration of PbTe/Ag2Te Composites with Excess Ag for High Thermoelectric Performance. Adv. Energy Mater. 2011, 1, 291–296. doi:10.1002/aenm.201000072
  • Pei, Y.; Lensch‐Falk, J.; Toberer, E. S.; Medlin, D. L.; Snyder, G. J. High Thermoelectric Performance in PbTe Due to Large Nanoscale Ag2Te Precipitates and La Doping. Adv. Funct. Mater. 2011, 21, 241–249. doi:10.1002/adfm.201000878
  • Lee, Y.; Lo, S. H.; Androulakis, J.; Wu, C. I.; Zhao, L. D.; Chung, D. Y.; Hogan, T. P.; Dravid, V. P.; Kanatzidis, M. G., High-performance tellurium-free thermoelectrics: all-scale hierarchical structuring of p-Type PbSe–MSe Systems (M = Ca, Sr, Ba). J. Am. Chem. Soc. 2013, 135, 5152–5160. doi:10.1021/ja400069s
  • Lee, Y.; Lo, S. H.; Chen, C.; Sun, H.; Chung, D. Y.; Chasapis, T. C.; Uher, C.; Dravid, V. P.; Kanatzidis, M. G. Contrasting Role of Antimony and Bismuth Dopants on the Thermoelectric Performance of Lead Selenide. Nat. Commun. 2014, 5, 1–11. doi:10.1038/ncomms4640.
  • Zhao, L. D.; He, J.; Hao, S.; Wu, C. I.; Hogan, T. P.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G., Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS. J. Am. Chem. Soc. 2012, 134, 16327–16336. doi:10.1021/ja306527n
  • Zhao, L. D.; He, J.; Wu, C. I.; Hogan, T. P.; Zhou, X.; Uher, C.; Dravid, V. P.; Kanatzidis, M. G. Thermoelectrics with Earth Abundant Elements: high Performance p-Type PbS Nanostructured with SrS and CaS. J. Am. Chem. Soc. 2012, 134, 7902–7912. doi:10.1021/ja301772w
  • Tan, G.; Shi, F.; Hao, S.; Chi, H.; Zhao, L. D.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Codoping in SnTe: enhancement of Thermoelectric Performance through Synergy of Resonance Levels and Band Convergence. J. Am. Chem. Soc. 2015, 137, 5100–5112. doi:10.1021/jacs.5b00837
  • Li, H.; Tang, X.; Zhang, Q.; Uher, C. High Performance InxCeyCo4Sb12 Thermoelectric Materials with in Situ Forming Nanostructured InSb Phase. Appl. Phys. Lett. 2009, 94, 102114. doi:10.1063/1.3099804
  • Wang, S.; Li, H.; Lu, R.; Zheng, G.; Tang, X. Metal Nanoparticle Decorated n-Type Bi2Te3-Based Materials with Enhanced Thermoelectric Performances. Nanotechnology 2013, 24, 285702. doi:10.1088/0957-4484/24/28/285702
  • Zhao, L. D.; Wu, H. J.; Hao, S. Q.; Wu, C. I.; Zhou, X. Y.; Biswas, K.; He, J. Q.; Hogan, T. P.; Uher, C.; Wolverton, C.; et al. All-Scale Hierarchical Thermoelectrics: MgTe in PbTe Facilitates Valence Band Convergence and Suppresses Bipolar Thermal Transport for High Performance. Energy Environ. Sci. 2013, 6, 3346–3355. doi:10.1039/c3ee42187b
  • Pei, Y.; LaLonde, A. D.; Heinz, N. A.; Snyder, G. J. High Thermoelectric Figure of Merit in PbTe Alloys Demonstrated in PbTe–CdTe. Adv. Energy Mater. 2012, 2, 2, 670–675. doi:10.1002/aenm.201100770
  • Sun, Q.; Chen, Z. Y.; Li, M.; Shi, X. L.; Xu, S. D.; Yin, Y.; Dargusch, M.; Zou, J.; Ang, R.; Chen, Z. G. Structural Evolution of High‐Performance Mn‐Alloyed Thermoelectric Materials: A Case Study of SnTe. Small. 2021, 17, 2100525. doi:10.1002/smll.202100525
  • Nandihalli, N.; Wijethunge, D.; Kim, K.; Kim, J.; Gayner, C. High Efficient Nanostructured PbSe0.5Te0.5 Exhibiting Broad Figure-of-Merit Plateau. J. Alloys Compd 2019, 785, 862–870. doi:10.1016/j.jallcom.2019.01.105
  • Lejcek, P. Grain Boundary Segregation in Metals. Berlin Heidelberg: Springer Science & Business Media, 2010; Vol. 136.
  • I.A. Ovid'ko, C.S. Pande and R.A. Masumura, Grain boundaries in nanomaterials. Chapter 18, in: Handbook on Nanomaterials, edited by Y.G. Gogotsi (CRC: Florida, 2005) pp. 531–552.
  • Sutton, A. P.; Balluffi, R. W. Grain Boundaries in Crystalline Materials. Oxford Sci., Oxford: 1996.
  • Valiev, R. Z.; Islamgaliev, R. K.; Alexandrov, I. V. Bulk Nanostructured Materials from Severe Plastic Deformation. Prog. Mater. Sci. 2000, 45, 103–189. [Database] doi:10.1016/S0079-6425(99)00007-9
  • Clarke, D. R. On the Equilibrium Thickness of Intergranular Glass Phases in Ceramic Materials. J. Am. Ceramic Soc. 1987, 70, 15–22. doi:10.1111/j.1151-2916.1987.tb04846.x
  • He, J.; Sootsman, J. R.; Girard, S. N.; Zheng, J. C.; Wen, J.; Zhu, Y.; Kanatzidis, M. G.; Dravid, V. P. On the Origin of Increased Phonon Scattering in Nanostructured PbTe Based Thermoelectric Materials. J. Am. Chem. Soc. 2010, 132, 8669–8675. doi:10.1021/ja1010948
  • He, Y.; Lu, P.; Shi, X.; Xu, F.; Zhang, T.; Snyder, G. J.; Uher, C.; Chen, L. Ultrahigh Thermoelectric Performance in Mosaic Crystals. Adv. Mater. 2015, 27, 3639–3644. doi:10.1002/adma.201501030
  • Geis, M. W.; Smith, H. I.; Argoitia, A.; Angus, J.; Ma, G. H.; Glass, J. T.; Butler, J.; Robinson, C. J.; Pryor, R. Large‐Area Mosaic Diamond Films Approaching Single‐Crystal Quality. Appl. Phys. Lett. 1991, 58, 2485–2487. doi:10.1063/1.104851
  • Furuta, Y.; Mizuta, H.; Nakazato, K.; Kamiya, T.; Tan, Y. T.; Durrani, Z. A.; Taniguchi, K. Characterization of Tunnel Barriers in Polycrystalline Silicon Point-Contact Single-Electron Transistors. Jpn. J. Appl. Phys. 2002, 41, 2675–2678. doi:10.1143/JJAP.41.2675
  • Seto, J. Y. W. The Electrical Properties of Polycrystalline Silicon Films. J. Appl. Phys. 1975, 46, 5247–5254. doi:10.1063/1.321593
  • Zyubina, T. S.; Neudachina, V. S.; Yashina, L. V.; Shtanov, V. I. XPS and ab Initio Study of the Interaction of PbTe with Molecular Oxygen. Surf. Sci. 2005, 574, 52–64. doi:10.1016/j.susc.2004.10.017
  • Aleksandrova, O. A.; Akhmedzhanov, A. T.; Bondokov, R. T.; Moshnikov, V. A.; Saunin, I. V.; Tairov, Y. M.; Shtanov, V. I.; Yashina, L. V. The in/PbTe Barrier Structures with a Thin Intermediate Insulating Layer. Semicond 2000, 34, 1365–1369. doi:10.1134/1.1331792
  • Martin, J.; Wang, L.; Chen, L.; Nolas, G. S. Enhanced Seebeck Coefficient through Energy-Barrier Scattering in PbTe Nanocomposites. Phys. Rev. B. 2009, 79, 115311. doi:10.1103/PhysRevB.79.115311
  • Lehmann, T.; Ryndyk, D. A.; Cuniberti, G. Enhanced Thermoelectric Figure of Merit in Polycrystalline Carbon Nanostructures. Phys. Rev. B. 2015, 92, 035418. doi:10.1103/PhysRevB.92.035418
  • Fei, R.; Faghaninia, A.; Soklaski, R.; Yan, J. A.; Lo, C.; Yang, L. Enhanced Thermoelectric Efficiency via Orthogonal Electrical and Thermal Conductances in Phosphorene. Nano Lett. 2014, 14, 6393–6399. doi:10.1021/nl502865s
  • Jacoboni, C.; Reggiani, L. The Monte Carlo Method for the Solution of Charge Transport in Semiconductors with Applications to Covalent Materials. Rev. Mod. Phys. 1983, 55, 645–705. doi:10.1103/RevModPhys.55.645
  • Jeng, M. S.; Yang, R.; Song, D.; Chen, G. Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation. J. Heat Transf. 2008, 130, 042410. doi:10.1115/1.2818765
  • Yang, L.; Minnich, A. J. Thermal Transport in Nanocrystalline Si and SiGe by ab Initio Based Monte Carlo Simulation. Sci. Rep. 2017, 7, 1–11. doi:10.1038/srep44254.
  • Yang, R.; Chen, G.; Laroche, M.; Taur, Y. Simulation of Nanoscale Multidimensional Transient Heat Conduction Problems Using Ballistic-Diffusive Equations and Phonon Boltzmann Equation. J. Heat Transfer. 2005, 127, 298–306. doi:10.1115/1.1857941
  • N. Nandihalli, Thermoelectric films and periodic structures and spin Seebeck effect systems: Facets of performance optimization, Mater. Today Energy 25 (2022) 100965. https://doi.org/10.1016/j.mtener.2022.100965.
  • Chen, G. Thermal Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices. Phys. Rev. B. 1998, 57, 14958–14973. doi:10.1103/PhysRevB.57.14958
  • Lee, S. M.; Cahill, D. G.; Venkatasubramanian, R. Thermal Conductivity of Si–Ge Superlattices. Appl. Phys. Lett. 1997, 70, 2957–2959. doi:10.1063/1.118755
  • Daly, B. C.; Maris, H. J.; Imamura, K.; Tamura, S. Molecular Dynamics Calculation of the Thermal Conductivity of Superlattices. Phys. Rev. B. 2002, 66, 024301. doi:10.1103/PhysRevB.66.024301
  • Chen, Y.; Li, D.; Lukes, J. R.; Ni, Z.; Chen, M. Minimum Superlattice Thermal Conductivity from Molecular Dynamics. Phys. Rev. B. 2005, 72, 174302. doi:10.1103/PhysRevB.72.174302
  • Garg, J.; Chen, G. Minimum Thermal Conductivity in Superlattices: A First-Principles Formalism. Phys. Rev. B. 2013, 87, 140302. doi:10.1103/PhysRevB.87.140302
  • Aksamija, Z.; Knezevic, I. Thermal Conductivity of Si1−xGex/Si1−yGey Superlattices: Competition between Interfacial and Internal Scattering. Phys. Rev. B. 2013, 88, 155318. doi:10.1103/PhysRevB.88.155318
  • Nandihalli, N.; Gorsse, S.; Kleinke, H. Effects of Additions of Carbon Nanotubes on the Thermoelectric Properties of Ni0.05Mo3Sb5.4Te1.6. J. Solid State Chem. 2015, 226, 164–169. doi:10.1016/j.jssc.2015.02.016
  • Nandihalli, N.; Lahwal, A.; Thompson, D.; Holgate, T. C.; Tritt, T. M.; Dassylva-Raymond, V.; Kiss, L. I.; Sellier, E.; Gorsse, S.; Kleinke, H. Thermoelectric Properties of Composites Made of Ni0.05Mo3Sb5.4Te1.6 and Fullerene. J. Solid State Chem. 2013, 203, 25–30. doi:10.1016/j.jssc.2013.03.061
  • Xing, Z. B.; Li, J. F. Lead-Free AgSn4SbTe6 Nanocomposites with Enhanced Thermoelectric Properties by SiC Nanodispersion. J. Alloys Compd. 2016, 687, 246–251. doi:10.1016/j.jallcom.2016.06.133
  • Zhang, J.; Li, S.; Zhu, Z.; Wu, Z.; Zhang, J. Enhancing the Thermoelectric Properties of SnTe via Introducing PbTe@ C Core–Shell Nanostructures. Dalton Trans. 2021, 50, 10515–10523. doi:10.1039/D1DT01725J
  • Nandihalli, N.; Guo, Q.; Gorsse, S.; Khan, A. U.; Mori, T.; Kleinke, H. Thermoelectric Properties of Ni0.05Mo3Sb5.4Te1.6 with Embedded SiC and Al2O3 Nanoparticles. Eur. J. Inorg. Chem. 2016, 2016, 853–860. doi:10.1002/ejic.201501063
  • Sootsman, J. R.; Pcionek, R. J.; Kong, H.; Uher, C.; Kanatzidis, M. G. Strong Reduction of Thermal Conductivity in Nanostructured PbTe Prepared by Matrix Encapsulation. Chem. Mater. 2006, 18, 4993–4995. doi:10.1021/cm0612090
  • Heremans, J. P.; Thrush, C. M.; Morelli, D. T. Thermopower Enhancement in PbTe with Pb Precipitates. J. Appl. Phys 2005, 98, 063703. doi:10.1063/1.2037209
  • Li, Y. Y.; Qin, X. Y.; Li, D.; Zhang, J.; Li, C.; Liu, Y. F.; Song, C. J.; Xin, H. X.; Guo, H. F. Enhanced Thermoelectric Performance of Cu2Se/Bi0.4Sb1.6Te3 Nanocomposites at Elevated Temperatures. Appl. Phys. Lett. 2016, 108, 062104. doi:10.1063/1.4941757
  • Huang, X.; Xu, Z.; Chen, L. The Thermoelectric Performance of ZrNiSn/ZrO2 Composites. Solid State Commun. 2004, 130, 181–185. doi:10.1016/j.ssc.2004.02.001
  • Yeo, Y. H.; Oh, T. S. Thermoelectric Properties of p-Type (Bi, Sb)2Te3 Nanocomposites Dispersed with Multiwall Carbon Nanotubes. Mater. Res. Bull. 2014, 58, 54–58. doi:10.1016/j.materresbull.2014.04.046
  • Zhou, X.; Wang, G.; Guo, L.; Chi, H.; Wang, G.; Zhang, Q.; Chen, C.; Thompson, T.; Sakamoto, J.; Dravid, V. P.; et al. Hierarchically Structured TiO2 for Ba-Filled Skutterudite with Enhanced Thermoelectric Performance. J. Mater. Chem. A. 2014, 2, 20629–20635. doi:10.1039/C4TA05285D
  • Prytz, O.; Gunnaes, A. E.; Karlsen, O. B.; Breivik, T. H.; Toberer, E. S.; Jeffrey Snyder, G.; Tafto, J. Nanoscale Inclusions in the Phonon Glass Thermoelectric Material Zn4Sb3. Philos. Mag. Lett. 2009, 89, 362–369. doi:10.1080/09500830902950464
  • Savvides, N.; Goldsmid, H. J. Boundary Scattering of Phonons in Fine-Grained Hot-Pressed Ge-Si Alloys. I. The Dependence of Lattice Thermal Conductivity on Grain Size and Porosity. J. Phys. C: Solid State Phys. 1980, 13, 4657–4670. doi:10.1088/0022-3719/13/25/009
  • Rowe, D. M.; Shukla, V. S.; Savvides, N. Phonon Scattering at Grain Boundaries in Heavily Doped Fine-Grained Silicon–Germanium Alloys. Nature. 1981, 290, 765–766. doi:10.1038/290765a0
  • Vining, C. B.; Laskow, W.; Hanson, J. O.; Van der Beck, R. R.; Gorsuch, P. D. Thermoelectric Properties of Pressure‐Sintered Si0.8Ge0.2 Thermoelectric Alloys. J. Appl. Phys. 1991, 69, 4333–4340. doi:10.1063/1.348408
  • Nandihalli, N.; Mori, T.; Kleinke, H. Effect of Addition of SiC and Al2O3 Refractories on Kapitza Resistance of Antimonide-Telluride. AIP Adv. 2018, 8, 095009. doi:10.1063/1.5034520
  • Fu, C.; Wu, H.; Liu, Y.; He, J.; Zhao, X.; Zhu, T. Enhancing the Figure of Merit of Heavy-Band Thermoelectric Materials Through Hierarchical Phonon Scattering. Adv. Sci. (Weinh). 2016, 3, 1600035. doi:10.1002/advs.201600035
  • Joshi, G.; Yan, X.; Wang, H.; Liu, W.; Chen, G.; Ren, Z. Enhancement in Thermoelectric Figure‐of‐Merit of an N‐Type Half‐Heusler Compound by the Nanocomposite Approach. Adv. Energy Mater. 2011, 1, 643–647. doi:10.1002/aenm.201100126
  • Xu, Z. J.; Hu, L. P.; Ying, P. J.; Zhao, X. B.; Zhu, T. J. Enhanced Thermoelectric and Mechanical Properties of Zone Melted p-Type (Bi, Sb)2Te3 Thermoelectric Materials by Hot Deformation. Acta Mater. 2015, 84, 385–392. doi:10.1016/j.actamat.2014.10.062
  • Pundir, S. K.; Singh, S.; Jain, P. Spark Plasma Sintering Effect on Thermoelectric Properties of Nanostructured Bismuth Telluride Synthesized by High Energy Ball Milling. J. Nanosci. Nanotechnol. 2020, 20, 3902–3908. doi:10.1166/jnn.2020.17515
  • Kim, J.; Duy, L. T.; Ahn, B.; Seo, H. Pre-Oxidation Effects on Properties of Bismuth Telluride Thermoelectric Composites Compacted by Spark Plasma Sintering. J. Asian Ceram. Soc. 2020, 8, 211–221. doi:10.1080/21870764.2020.1723197
  • Hu, L.; Zhu, T.; Liu, X.; Zhao, X. Point Defect Engineering of High‐Performance Bismuth‐Telluride‐Based Thermoelectric Materials. Adv. Funct. Mater. 2014, 24, 5211–5218. doi:10.1002/adfm.201400474
  • Joshi, G.; Lee, H.; Lan, Y.; Wang, X.; Zhu, G.; Wang, D.; Gould, R. W.; Cuff, D. C.; Tang, M. Y.; Dresselhaus, M. S.; et al. Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-Type Silicon Germanium Bulk Alloys. Nano Lett. 2008, 8, 4670–4674. doi:10.1021/nl8026795
  • Wang, X. W.; Lee, H.; Lan, Y. C.; Zhu, G. H.; Joshi, G.; Wang, D. Z.; Yang, J.; Muto, A. J.; Tang, M. Y.; Klatsky, J.; et al. Enhanced Thermoelectric Figure of Merit in Nanostructured n-Type Silicon Germanium Bulk Alloy. Appl. Phys. Lett. 2008, 93, 193121. doi:10.1063/1.3027060
  • Tang, X.; Wang, G.; Zheng, Y.; Zhang, Y.; Peng, K.; Guo, L.; Wang, S.; Zeng, M.; Dai, J.; Wang, G.; Zhou, X. Ultra Rapid Fabrication of p-Type Li-Doped Mg2Si0.4Sn0.6 Synthesized by Unique Melt Spinning Method. Scr. Mater. 2016, 115, 52–56. doi:10.1016/j.scriptamat.2015.12.031
  • Liu, W. S.; Zhang, B. P.; Zhao, L. D.; Li, J. F. Improvement of Thermoelectric Performance of CoSb3−x Tex Skutterudite Compounds by Additional Substitution of IVB-Group Elements for Sb. Chem. Mater. 2008, 20, 7526–7531. doi:10.1021/cm802367f
  • Chen, Q.; Wang, G.; Zhang, A.; Yang, D.; Yao, W.; Peng, K.; Yan, Y.; Sun, X.; Liu, A.; Wang, G.; Zhou, X. Colloidal Synthesis of Cu2−xAgxCdSnSe4 Nanocrystals: microstructures Facilitate High Performance Thermoelectricity. J. Mater. Chem. C. 2015, 3, 12273–12280. doi:10.1039/C5TC02948A
  • Zhang, A.; Chen, Q.; Yao, W.; Yang, D.; Wang, G.; Zhou, X. Large-Scale Colloidal Synthesis of co-Doped Cu2SnSe3 Nanocrystals for Thermoelectric Applications. Journal of Elec. Mater. 2016, 45, 1935–1941. doi:10.1007/s11664-015-4302-7
  • Zhang, A.; Shen, X.; Zhang, Z.; Lu, X.; Yao, W.; Dai, J.; Xie, D.; Guo, L.; Wang, G.; Zhou, X. Large-Scale Colloidal Synthesis of Cu5FeS4 Compounds and Their Application in Thermoelectrics. J. Mater. Chem. C. 2017, 5, 301–308. doi:10.1039/C6TC04661D
  • Zhang, Q.; Ai, X.; Wang, L.; Chang, Y.; Luo, W.; Jiang, W.; Chen, L. Improved Thermoelectric Performance of Silver Nanoparticles‐Dispersed Bi2Te3 Composites Deriving from Hierarchical Two‐Phased Heterostructure. Adv. Funct. Mater. 2015, 25, 966–976. doi:10.1002/adfm.201402663
  • Sabarinathan, M.; Omprakash, M.; Harish, S.; Navaneethan, M.; Archana, J.; Ponnusamy, S.; Ikeda, H.; Takeuchi, T.; Muthamizhchelvan, C.; Hayakawa, Y. Enhancement of Power Factor by Energy Filtering Effect in Hierarchical BiSbTe3 Nanostructures for Thermoelectric Applications. Appl. Surf. Sci. 2017, 418, 246–251. doi:10.1016/j.apsusc.2016.12.010
  • Wu, D.; Zhao, L.-D.; Hao, S.; Jiang, Q.; Zheng, F.; Doak, J. W.; Wu, H.; Chi, H.; Gelbstein, Y.; Uher, C.; et al. Origin of the High Performance in GeTe-Based Thermoelectric Materials upon Bi2Te3 Doping. J. Am. Chem. Soc. 2014, 136, 11412–11419. doi:10.1021/ja504896a
  • Tan, G.; Hao, S.; Cai, S.; Bailey, T. P.; Luo, Z.; Hadar, I.; Uher, C.; Dravid, V. P.; Wolverton, C.; Kanatzidis, M. G. All-Scale Hierarchically Structured p-Type PbSe Alloys with High Thermoelectric Performance Enabled by Improved Band Degeneracy. J. Am. Chem. Soc. 2019, 141, 4480–4486. doi:10.1021/jacs.9b00967
  • Chen, J.; Xue, W.; Chen, C.; Li, H.; Cai, C.; Zhang, Q.; Wang, Y. All-Scale Hierarchical Structure Contributing to Ultralow Thermal Conductivity of Zintl Phase CaAg0.2Zn0.4Sb. Adv Sci (Weinh). 2021, 8, 2100109. doi:10.1002/advs.202100109
  • Guo, K.; Zhang, J.; Zhang, Y.; Liu, L.; Yuan, S.; Jiang, Y.; Luo, J.; Zhao, J. T. Minimizing Thermal Conductivity for Boosting Thermoelectric Properties of Cu–Ni-Based Alloys through All-Scale Hierarchical Architectures. ACS Appl. Energy Mater. 2021, 4, 5015–5023. doi:10.1021/acsaem.1c00559
  • Tan, G.; Zhao, L. D.; Kanatzidis, M. G., Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 2016, 116, 12123–12149. doi:10.1021/acs.chemrev.6b00255
  • Qin, H.; Zhu, J.; Li, N.; Wu, H.; Guo, F.; Sun, S.; Qin, D.; Pennycook, S. J.; Zhang, Q.; Cai, W.; Sui, J. Enhanced Mechanical and Thermoelectric Properties Enabled by Hierarchical Structure in Medium-Temperature Sb2Te3 Based Alloys. Nano Energy. 2020, 78, 105228. doi:10.1016/j.nanoen.2020.105228
  • Jang, J. I.; Lee, J. E.; Kim, B. S.; Park, S. D.; Lee, H. S. Twinning and Its Formation Mechanism in a Binary Mg2Si Thermoelectric Material with an anti-Fluorite Structure. RSC Adv. 2017, 7, 21671–21677. doi:10.1039/C7RA00541E
  • Wu, H. J.; Zhao, L. D.; Zheng, F. S.; Wu, D.; Pei, Y. L.; Tong, X.; Kanatzidis, M. G.; He, J. Q. Broad Temperature Plateau for Thermoelectric Figure of Merit ZT> 2 in Phase-Separated PbTe0.7S0.3. Nat. Commun. 2014, 5, 1–9. doi:10.1038/ncomms5515.
  • Choi, H.; Jeong, K.; Chae, J.; Park, H.; Baeck, J.; Kim, T. H.; Song, J. Y.; Park, J.; Jeong, K. H.; Cho, M. H. Enhancement in Thermoelectric Properties of Te-Embedded Bi2Te3 by Preferential Phonon Scattering in Heterostructure Interface. Nano Energy. 2018, 47, 374–384. doi:10.1016/j.nanoen.2018.03.009
  • Duvjir, G.; Min, T.; Thi Ly, T.; Kim, T.; Duong, A. T.; Cho, S.; Rhim, S.; Lee, J.; Kim, J. Origin of p-Type Characteristics in a SnSe Single Crystal. Appl. Phys. Lett. 2017, 110, 262106. doi:10.1063/1.4991003
  • Xiao, Y.; Wu, H.; Li, W.; Yin, M.; Pei, Y.; Zhang, Y.; Fu, L.; Chen, Y.; Pennycook, S. J.; Huang, L.; et al. Remarkable Roles of Cu to Synergistically Optimize Phonon and Carrier Transport in n-Type PbTe-Cu2Te. J. Am. Chem. Soc. 2017, 139, 18732–18738. doi:10.1021/jacs.7b11662
  • Hong, M.; Chen, Z. G.; Matsumura, S.; Zou, J. Nano-Scale Dislocations Induced by Self-Vacancy Engineering Yielding Extraordinary n-Type Thermoelectric Pb0.96-yInySe. Nano Energy. 2018, 50, 785–793. doi:10.1016/j.nanoen.2018.06.030
  • Zhou, X.; Yan, Y.; Lu, X.; Zhu, H.; Han, X.; Chen, G.; Ren, Z. Routes for High-Performance Thermoelectric Materials. Mater. Today. 2018, 21, 974–988. doi:10.1016/j.mattod.2018.03.039
  • Tan, G.; Zhao, L. D.; Kanatzidis, M. G. Rationally Designing High-Performance Bulk Thermoelectric Materials. Chem. Rev. 2016, 116, 12123–12149. doi:10.1021/acs.chemrev.6b00255
  • Wu, H.; Zheng, F.; Wu, D.; Ge, Z. H.; Liu, X.; He, J. Advanced Electron Microscopy for Thermoelectric Materials. Nano Energy. 2015, 13, 626–650. doi:10.1016/j.nanoen.2015.03.034
  • Goldsmid, H. J.; Douglas, R. W. The Use of Semiconductors in Thermoelectric Refrigeration. Br. J. Appl. Phys. 1954, 5, 386–390. doi:10.1088/0508-3443/5/11/303
  • Zhou, M.; Li, J. F.; Kita, T. Nanostructured AgPbmSbTem+2 System Bulk Materials with Enhanced Thermoelectric Performance. J. Am. Chem. Soc. 2008, 130, 4527–4532. doi:10.1021/ja7110652
  • Quarez, E.; Hsu, K. F.; Pcionek, R.; Frangis, N.; Polychroniadis, E. K.; Kanatzidis, M. G. Nanostructuring, Compositional Fluctuations, and Atomic Ordering in the Thermoelectric Materials AgPbmSbTe2+m. Myth Solid Solution. JACS. 2005, 127, 9177–9190. doi:10.1021/ja051653o.
  • Hogan, T. P.; Downey, A.; Short, J.; D’Angelo, J.; Wu, C.-I.; Quarez, E.; Androulakis, J.; Poudeu, P. F. P.; Sootsman, J. R.; Chung, D.-Y.; et al. Nanostructured Thermoelectric Materials and High-Efficiency Power-Generation Modules. J. Elec. Mater. 2007, 36, 704–710. doi:10.1007/s11664-007-0174-9
  • Cook, B. A.; Kramer, M. J.; Harringa, J. L.; Han, M. K.; Chung, D. Y.; Kanatzidis, M. G. Analysis of Nanostructuring in High Figure‐of‐Merit Ag1–xPbmSbTe2+m Thermoelectric Materials. Adv. Funct. Mater. 2009, 19, 1254–1259. doi:10.1002/adfm.200801284
  • Wu, D.; Zhao, L.-D.; Tong, X.; Li, W.; Wu, L.; Tan, Q.; Pei, Y.; Huang, L.; Li, J.-F.; Zhu, Y.; et al. Superior Thermoelectric Performance in PbTe–PbS Pseudo-Binary: extremely Low Thermal Conductivity and Modulated Carrier Concentration. Energy Environ. Sci. 2015, 8, 2056–2068. doi:10.1039/C5EE01147G
  • Liu, S.; Yu, Y.; Wu, D.; Xu, X.; Chao, X.; Yang, Z.; He, J. Strained Endotaxial PbS Nanoprecipitates Boosting Ultrahigh Thermoelectric Quality Factor in n‐Type PbTe as‐Cast Ingots. Small 2021, 17, 2104496. doi:10.1002/smll.202104496
  • Tan, G.; Shi, F.; Hao, S.; Chi, H.; Bailey, T. P.; Zhao, L. D.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Valence Band Modification and High Thermoelectric Performance in SnTe Heavily Alloyed with MnTe. J. Am. Chem. Soc. 2015, 137, 11507–11516. doi:10.1021/jacs.5b07284
  • Wu, H.; Chang, C.; Feng, D.; Xiao, Y.; Zhang, X.; Pei, Y.; Zheng, L.; Wu, D.; Gong, S.; Chen, Y.; et al. Synergistically Optimized Electrical and Thermal Transport Properties of SnTe via Alloying High-Solubility MnTe. Energy Environ. Sci. 2015, 8, 3298–3312. doi:10.1039/C5EE02423D
  • Faleev, S. V.; Leonard, F. Theory of Enhancement of Thermoelectric Properties of Materials with Nanoinclusions. Phys. Rev. B. 2008, 77, 214304. doi:10.1103/PhysRevB.77.214304
  • Fang, H.; Wu, Y. Telluride Nanowire and Nanowire Heterostructure-Based Thermoelectric Energy Harvesting. J. Mater. Chem. A 2014, 2, 6004–6014. doi:10.1039/C3TA14129B
  • Dehkordi, A. M.; Zebarjadi, M.; He, J.; Tritt, T. M. Thermoelectric Power Factor: Enhancement Mechanisms and Strategies for Higher Performance Thermoelectric Materials. Mater. Sci. Eng. R Rep. 2015, 97, 1–22. doi:10.1016/j.mser.2015.08.001
  • Whitlow, L. W.; Hirano, T. Superlattice Applications to Thermoelectricity. J. Appl. Phys. 1995, 78, 5460–5466. doi:10.1063/1.359661
  • Nishio, Y.; Hirano, T. Improvement of the Efficiency of Thermoelectric Energy Conversion by Utilizing Potential Barriers. Jpn. J. Appl. Phys. 1997, 36, 170–174. doi:10.1143/JJAP.36.170
  • Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R.; Lee, H.; Wang, D.; Ren, Z.; Fleurial, J. P.; Gogna, P. New Directions for Low‐Dimensional Thermoelectric Materials. Adv. Mater. 2007, 19, 1043–1053. doi:10.1002/adma.200600527
  • Heremans, J. P.; Thrush, C. M.; Morelli, D. T. Thermopower Enhancement in Lead Telluride Nanostructures. Phys. Rev. B. 2004, 70, 115334. doi:10.1103/PhysRevB.70.115334
  • Soni, A.; Shen, Y.; Yin, M.; Zhao, Y.; Yu, L.; Hu, X.; Dong, Z.; Khor, K. A.; Dresselhaus, M. S.; Xiong, Q. Interface Driven Energy Filtering of Thermoelectric Power in Spark Plasma Sintered Bi2Te2.7Se0.3 Nanoplatelet Composites. Nano Lett. 2012, 12, 4305–4310. doi:10.1021/nl302017w
  • Massetti, M.; Jiao, F.; Ferguson, A. J.; Zhao, D.; Wijeratne, K.; Würger, A.; Blackburn, J. L.; Crispin, X.; Fabiano, S. Unconventional Thermoelectric Materials for Energy Harvesting and Sensing Applications. Chem. Rev. 2021, 121, 12465–12547. doi:10.1021/acs.chemrev.1c00218
  • Zhang, G.; Kirk, B.; Jauregui, L. A.; Yang, H.; Xu, X.; Chen, Y. P.; Wu, Y. Rational Synthesis of Ultrathin n-type Bi2Te3 nanowires with enhanced thermoelectric properties. Nano Lett. 2012, 12, 56–60. doi:10.1021/nl202935k
  • Zhong, B.; Zhang, Y.; Li, W.; Chen, Z.; Cui, J.; Li, W.; Xie, Y.; Hao, Q.; He, Q. High Superionic Conduction Arising from Aligned Large Lamellae and Large Figure of Merit in Bulk Cu1.94Al0.02Se. Appl. Phys. Lett. 2014, 105, 123902. doi:10.1063/1.4896520
  • Zhao, L. D.; Lo, S. H.; Zhang, Y.; Sun, H.; Tan, G.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Crystals. Nature 2014, 508, 373–377. doi:10.1038/nature13184
  • Ren, G.; Butt, S.; Zeng, C.; Liu, Y.; Zhan, B.; Lan, J.; Lin, Y.; Nan, C. Electrical and Thermal Transport Behavior in Zn-Doped BiCuSeO Oxyselenides. Journal of Elec. Materi. 2015, 44, 1627–1631. doi:10.1007/s11664-014-3495-5
  • Yang, L.; Chen, Z. G.; Hong, M.; Han, G.; Zou, J. Enhanced Thermoelectric Performance of Nanostructured Bi2Te3 through Significant Phonon Scattering. ACS Appl. Mater. Interfaces 2015, 7, 23694–23699. doi:10.1021/acsami.5b07596
  • Chen, S.; Logothetis, N.; Ye, L.; Liu, J. A High Performance Ag Alloyed Nano-Scale n-Type Bi2Te3 Based Thermoelectric Material. Mater. Today: Proc. 2015, 2, 610–619. doi:10.1016/j.matpr.2015.05.083
  • Yang, L.; Chen, Z. G.; Han, G.; Hong, M.; Zou, Y.; Zou, J. High-Performance Thermoelectric Cu2Se Nanoplates through Nanostructure Engineering. Nano Energy 2015, 16, 367–374. doi:10.1016/j.nanoen.2015.07.012
  • Gahtori, B.; Bathula, S.; Tyagi, K.; Jayasimhadri, M.; Srivastava, A.; Singh, S.; Budhani, R.; Dhar, A. Giant Enhancement in Thermoelectric Performance of Copper Selenide by Incorporation of Different Nanoscale Dimensional Defect Features. Nano Energy. 2015, 13, 36–46. doi:10.1016/j.nanoen.2015.02.008
  • Feng, D.; Ge, Z. H.; Wu, D.; Chen, Y. X.; Wu, T.; Li, J.; He, J. Enhanced Thermoelectric Properties of SnSe Polycrystals via Texture Control. Phys. Chem. Chem. Phys. 2016, 18, 31821–31827. doi:10.1039/c6cp06466c
  • Lee, E.; Ko, J.; Kim, J. Y.; Seo, W. S.; Choi, S. M.; Lee, K. H.; Shim, W.; Lee, W. Enhanced Thermoelectric Properties of Au Nanodot-Included Bi2T3 Nanotube Composites. J. Mater. Chem. C. 2016, 4, 1313–1319. doi:10.1039/C5TC03934G
  • Yang, L.; Chen, Z. G.; Han, G.; Hong, M.; Huang, L.; Zou, J. Te-Doped Cu2Se Nanoplates with a High Average Thermoelectric Figure of Merit. J. Mater. Chem. A. 2016, 4, 9213–9219. doi:10.1039/C6TA02998A
  • Jo, S.; Park, S. H.; Ban, H. W.; Gu, D. H.; Kim, B.-S.; Son, J. H.; Hong, H.-K.; Lee, Z.; Han, H.-S.; Jo, W.; et al. Simultaneous Improvement in Electrical and Thermal Properties of Interface-Engineered BiSbTe Nanostructured Thermoelectric Materials. J. Alloys Compd. 2016, 689, 899–907. doi:10.1016/j.jallcom.2016.08.033
  • Duong, A. T.; Duvjir, G.; Kwon, S.; Song, J. Y.; Lee, J. K.; Lee, J. E.; Park, S.; Min, T.; Lee, J.; Kim, J., Achieving ZT = 2.2 with Bi-doped n-type SnSe single crystals. Nat. Commun. 2016, 7, 1–6. doi:10.1038/ncomms13713
  • Fu, T.; Yue, X.; Wu, H.; Fu, C.; Zhu, T.; Liu, X.; Hu, L.; Ying, P.; He, J.; Zhao, X. Enhanced Thermoelectric Performance of PbTe Bulk Materials with Figure of Merit zT> 2 by Multi-Functional Alloying. J. Materiomics. 2016, 2, 141–149. doi:10.1016/j.jmat.2016.05.005
  • Zhang, D. B.; Li, H. Z.; Zhang, B. P.; Liang, D. d.; Xia, M. Hybrid-Structured ZnO Thermoelectric Materials with High Carrier Mobility and Reduced Thermal Conductivity. RSC Adv. 2017, 7, 10855–10864. doi:10.1039/C6RA28854E
  • Huang, X. Q.; Chen, Y. X.; Yin, M.; Feng, D.; He, J. Origin of the Enhancement in Transport Properties on Polycrystalline SnSe with Compositing Two-Dimensional Material MoSe2. Nanotechnology. 2017, 28, 105708. doi:10.1088/1361-6528/aa55e3
  • Li, S.; Liu, X.; Liu, Y.; Liu, F.; Luo, J.; Pan, F. Optimized Hetero-Interfaces by Tuning 2D SnS2 Thickness in Bi2Te2.7Se0.3/SnS2 Nanocomposites to Enhance Thermoelectric Performance. Nano Energy. 2017, 39, 297–305. doi:10.1016/j.nanoen.2017.07.011
  • Yang, S.; Si, J.; Su, Q.; Wu, H. Enhanced Thermoelectric Performance of SnSe Doped with Layered MoS2/Graphene. Mater. Lett. 2017, 193, 146–149. doi:10.1016/j.matlet.2017.01.079
  • Yu, Y.; He, D.-S.; Zhang, S.; Cojocaru-Mirédin, O.; Schwarz, T.; Stoffers, A.; Wang, X.-Y.; Zheng, S.; Zhu, B.; Scheu, C.; et al. Simultaneous Optimization of Electrical and Thermal Transport Properties of Bi0.5Sb1.5Te3 Thermoelectric Alloy by Twin Boundary Engineering. Nano Energy. 2017, 37, 203–213. doi:10.1016/j.nanoen.2017.05.031
  • Chen, Z.; Jian, Z.; Li, W.; Chang, Y.; Ge, B.; Hanus, R.; Yang, J.; Chen, Y.; Huang, M.; Snyder, G. J.; Pei, Y. Lattice Dislocations Enhancing thermoelectric pbte in Addition to Band Convergence. Adv. Mater. 2017, 29, 1606768. doi:10.1002/adma.201606768
  • Peng, Z.; He, D.; Mu, X.; Zhou, H.; Li, C.; Ma, S.; Ji, P.; Hou, W.; Wei, P.; Zhu, W.; et al. Preparation and Enhanced Thermoelectric Performance of Cu2Se–SnSe Composite Materials. J. Elec. Mater. 2018, 47, 3350–3357. doi:10.1007/s11664-018-6218-5
  • Li, S.; Liu, Y.; Liu, F.; He, D.; He, J.; Luo, J.; Xiao, Y.; Pan, F. Effective Atomic Interface Engineering in Bi2Te2.7Se0.3 Thermoelectric Material by Atomic-Layer-Deposition Approach. Nano Energy 2018, 49, 257–266. doi:10.1016/j.nanoen.2018.04.047
  • Liu, W.; Shi, X.; Hong, M.; Yang, L.; Moshwan, R.; Chen, Z. G.; Zou, J. Ag Doping Induced Abnormal Lattice Thermal Conductivity in Cu2Se. J. Mater. Chem. C. 2018, 6, 13225–13231. doi:10.1039/C8TC04129F
  • Liu, Y.; Zhang, Y.; Lim, K. H.; Ibáñez, M.; Ortega, S.; Li, M.; David, J.; Martí-Sánchez, S.; Ng, K. M.; Arbiol, J.; et al. High Thermoelectric Performance in Crystallographically Textured n-Type Bi2Te3- xSe x Produced from Asymmetric Colloidal Nanocrystals. ACS Nano. 2018, 12, 7174–7184. doi:10.1021/acsnano.8b03099
  • Tang, H.; Sun, F. H.; Dong, J. F.; Zhuang, H. L.; Pan, Y.; Li, J. F. Graphene Network in Copper Sulfide Leading to Enhanced Thermoelectric Properties and Thermal Stability. Nano Energy 2018, 49, 267–273. doi:10.1016/j.nanoen.2018.04.058
  • Zhou, C.; Yu, Y.; Lee, Y. K.; Cojocaru-Miredin, O.; Yoo, B.; Cho, S. P.; Im, J.; Wuttig, M.; Hyeon, T.; Chung, I. High-Performance n-Type PbSe-Cu2Se Thermoelectrics through Conduction Band Engineering and Phonon Softening . J. Am. Chem. Soc. 2018, 140, 15535–15545. doi:10.1021/jacs.8b10448
  • Wei, W.; Chang, C.; Yang, T.; Liu, J.; Tang, H.; Zhang, J.; Li, Y.; Xu, F.; Zhang, Z.; Li, J.-F.; Tang, G. Achieving High Thermoelectric Figure of Merit in Polycrystalline SnSe via Introducing Sn Vacancies. J. Am. Chem. Soc. 2018, 140, 499–505. doi:10.1021/jacs.7b11875
  • Hu, Q.; Zhu, Z.; Zhang, Y.; Li, X. J.; Song, H.; Zhang, Y. Remarkably High Thermoelectric Performance of Cu2−xLix Se Bulks with Nanopores. J. Mater. Chem. A. 2018, 6, 23417–23424. doi:10.1039/C8TA06912C
  • Zhao, L.; Islam, S. M. K. N.; Wang, J.; Cortie, D. L.; Wang, X.; Cheng, Z.; Wang, J.; Ye, N.; Dou, S.; Shi, X.; et al. Significant Enhancement of Figure-of-Merit in Carbon-Reinforced Cu2Se Nanocrystalline Solids. Nano Energy 2017, 41, 164–171. doi:10.1016/j.nanoen.2017.09.020
  • Chang, C.; Wu, M.; He, D.; Pei, Y.; Wu, C.-F.; Wu, X.; Yu, H.; Zhu, F.; Wang, K.; Chen, Y.; et al. 3D Charge and 2D Phonon Transports Leading to High out-of-Plane ZT in n-Type SnSe Crystals. Science 2018, 360, 778–783. doi:10.1126/science.aaq1479
  • Zheng, W.; Luo, Y.; Liu, Y.; Shi, J.; Xiong, R.; Wang, Z. Synergistical Tuning Interface Barrier and Phonon Propagation in Au-Sb2Te3 Nanoplate for Boosting Thermoelectric Performance. J. Phys. Chem. Lett. 2019, 10, 4903–4909. doi:10.1021/acs.jpclett.9b02312
  • Kim, K. C.; Lim, S. S.; Lee, S. H.; Hong, J.; Cho, D. Y.; Mohamed, A. Y.; Koo, C. M.; Baek, S. H.; Kim, J. S.; Kim, S. K. Precision Interface Engineering of an Atomic Layer in Bulk Bi2Te3 Alloys for High Thermoelectric Performance. ACS Nano. 2019, 13, 7146–7154. doi:10.1021/acsnano.9b02574
  • Shang, P. P.; Dong, J.; Pei, J.; Sun, F. H.; Pan, Y.; Tang, H.; Zhang, B. P.; Zhao, L. D.; Li, J. F. Highly Textured N-Type SnSe Polycrystals with Enhanced Thermoelectric Performance. Research (Wash D C) 2019, 2019, 9253132. doi:10.34133/2019/9253132
  • Tan, H.; Zhang, B.; Wang, G.; Chen, Y.; Shen, X.; Guo, L.; Han, X.; Lu, X.; Zhou, X. Rapid Preparation of Ge0.9Sb0.1Te1+x via Unique Melt Spinning: Hierarchical Microstructure and Improved Thermoelectric Performance. J. Alloys Compd. 2019, 774, 129–136. doi:10.1016/j.jallcom.2018.09.144
  • Li, M.; Islam, S. M.; Yahyaoglu, M.; Pan, D.; Shi, X.; Chen, L.; Aydemir, U.; Wang, X. Ultrahigh Figure‐of‐Merit of Cu2Se Incorporated with Carbon Coated Boron Nanoparticles. InfoMat. 2019, 1, 108–115. doi:10.1002/inf2.12006
  • Cho, J. Y.; Siyar, M.; Bae, S. H.; Mun, J. S.; Kim, M. Y.; Hong, S. H.; Park, C. Effect of Sintering Pressure on Electrical Transport and Thermoelectric Properties of Polycrystalline SnSe. Bull. Mater. Sci. 2020, 43, 1–7. doi:10.1007/s12034-020-2036-5.
  • Huang, L.; Lu, J.; Ma, D.; Ma, C.; Zhang, B.; Wang, H.; Wang, G.; Gregory, D. H.; Zhou, X.; Han, G. Facile in Situ Solution Synthesis of SnSe/rGO Nanocomposites with Enhanced Thermoelectric Performance. J. Mater. Chem. A. 2020, 8, 1394–1402, 10.1039/C9TA11737G.
  • Jiang, B.; Liu, X.; Wang, Q.; Cui, J.; Jia, B.; Zhu, Y.; Feng, J.; Qiu, Y.; Gu, M.; Ge, Z.; He, J. Realizing High-Efficiency Power Generation in Low-Cost PbS-Based Thermoelectric Materials. Energy Environ. Sci. 2020, 13, 579–591. doi:10.1039/C9EE03410B
  • Kawajiri, Y.; Tanusilp, S.; Kumagai, M.; Ishimaru, M.; Ohishi, Y.; Tanaka, J.; Kurosaki, K. Enhancement of Thermoelectric Properties of n-Type Bi2Te3–xSex by Energy Filtering Effect. ACS Appl. Energy Mater. 2021, 4, 11819–11826. doi:10.1021/acsaem.1c02560
  • Mao, X. Y.; Shi, X. L.; Zhai, L. C.; Liu, W. D.; Chen, Y. X.; Gao, H.; Li, M.; Wang, D. Z.; Wu, H.; Zheng, Z. H. High Thermoelectric and Mechanical Performance in the n-Type Polycrystalline SnSe Incorporated with Multi-Walled Carbon Nanotubes. J Mater Sci Technol. 2022, 114, 55–61. 10.1016/j.jmst.2021.12.002.
  • Bao, D.; Sun, Q.; Huang, L.; Chen, J.; Tang, J.; Zhou, D.; Hong, M.; Yang, L.; Chen, Z. G. Thermoelectric Performance of p-Type (Bi,Sb)2Te3 Incorporating Amorphous Sb2S3 Nanospheres. Chem. Eng. J. 2022, 430, 132738. doi:10.1016/j.cej.2021.132738
  • Liu, H. T.; Sun, Q.; Zhong, Y.; Deng, Q.; Gan, L.; Lv, F. L.; Shi, X. L.; Chen, Z. G.; Ang, R. High-Performance in n-Type PbTe-Based Thermoelectric Materials Achieved by Synergistically Dynamic Doping and Energy Filtering. Nano Energy 2022, 91, 106706. doi:10.1016/j.nanoen.2021.106706
  • Narducci, D. Energy Filtering and Thermoelectrics: Artifact or Artifice? J. Nanosci. Nanotechnol. 2017, 17, 1663–1667. doi:10.1166/jnn.2017.13726
  • Neophytou, N.; Thesberg, M. Modulation Doping and Energy Filtering as Effective Ways to Improve the Thermoelectric Power Factor. J. Comput. Electron. 2016, 15, 16–26. doi:10.1007/s10825-016-0792-7
  • Pei, J.; Cai, B.; Zhuang, H. L.; Li, J. F. Bi2Te3-based applied thermoelectric materials: research advances and new challenges. Natl. Sci. Rev. 2020, 7, 1856–1858. doi:10.1093/nsr/nwaa259
  • Cho, S.; Kim, Y.; DiVenere, A.; Wong, G. K.; Ketterson, J. B.; Meyer, J. R. Antisite Defects of Bi2Te3 Thin Films. Appl. Phys. Lett. 1999, 75, 1401–1403. doi:10.1063/1.124707
  • Shigetomi, S.; Mori, S. Electrical Properties of Bi2Te3. J. Phys. Soc. Jpn. 1956, 11, 915–919. doi:10.1143/JPSJ.11.915
  • Sootsman, J. R.; Chung, D. Y.; Kanatzidis, M. G. New and Old Concepts in Thermoelectric Materials. Angew. Chem. Int. Ed. Engl. 2009, 48, 8616–8639. doi:10.1002/anie.200900598
  • Nazaré, S., Ondracek, G., Thümmler, F. (1971). Relations Between Stereometric Microstructure and Properties of Cermets and Porous Materials. In: Hausner, H.H. (eds) Modern Developments in Powder Metallurgy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8963-1_13
  • Jorgensen, P. J.; Bartlett, R. W. Liquid‐Phase Sintering of SmCo5. J. Appl. Phys 1973, 44, 2876–2880. doi:10.1063/1.1662663
  • Bhame, S. D.; Pravarthana, D.; Prellier, W.; Noudem, J. G. Enhanced Thermoelectric Performance in Spark Plasma Textured Bulk n-Type BiTe2.7Se0.3 and p-Type Bi0.5Sb1.5Te3. Appl. Phys. Lett. 2013, 102, 211901. doi:10.1063/1.4807771
  • Hu, L. P.; Liu, X. H.; Xie, H. H.; Shen, J. J.; Zhu, T. J.; Zhao, X. B. Improving Thermoelectric Properties of n-Type Bismuth–Telluride-Based Alloys by Deformation-Induced Lattice Defects and Texture Enhancement. Acta Mater 2012, 60, 4431–4437. doi:10.1016/j.actamat.2012.05.008
  • Zhao, L. D.; Zhang, B. P.; Li, J. F.; Zhang, H. L.; Liu, W. S. Enhanced Thermoelectric and Mechanical Properties in Textured n-Type Bi2Te3 Prepared by Spark Plasma Sintering. Solid State Sci. 2008, 10, 651–658. doi:10.1016/j.solidstatesciences.2007.10.022
  • Srinivasan, R.; McReynolds, K.; Gothard, N. W.; Spowart, J. E. Texture Development during Deformation Processing of the n-Type Bismuth Telluride Alloy Bi2Se0.3Te2. Mater. Sci. Eng. A 2013, 588, 376–387. doi:10.1016/j.msea.2013.09.044
  • Touloukian, Y. S.; Powell, R. W.; Ho, C. Y.; Klemens, P. G. Thermal Conductivity: Nonmetallic Solids, Vol. 2 of TPRC Data Series. Plenum, New York, NY: 1970.
  • Dou, Y. C.; Qin, X. Y.; Li, D.; Li, L. L.; Zou, T. H.; Wang, Q. Q. Enhanced Thermopower and Thermoelectric Performance through Energy Filtering of Carriers in (Bi2Te3)0.2(Sb2Te3)0.8 Bulk Alloy Embedded with Amorphous SiO2 Nanoparticles. J. Appl. Phys 2013, 114, 044906. doi:10.1063/1.4817074
  • Hwang, E.; Sarma, S. D. Acoustic Phonon Scattering Limited Carrier Mobility in Two-Dimensional Extrinsic Graphene. Phys. Rev. B. 2008, 77, 115449. doi:10.1103/PhysRevB.77.115449
  • Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, Related Two-Dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage. Science 2015, 347(6217), 1246501. doi:10.1126/science.1246501
  • Checkelsky, J. G.; Ong, N. Thermopower and Nernst Effect in Graphene in a Magnetic Field. Phys. Rev. B. 2009, 80, 081413. doi:10.1103/PhysRevB.80.081413
  • Wang, D.; Shi, J. Effect of Charged Impurities on the Thermoelectric Power of Graphene near the Dirac point. Phys. Rev. B. 2011, 83, 113403. doi:10.1103/PhysRevB.83.113403
  • Wu, X.; Hu, Y.; Ruan, M.; Madiomanana, N. K.; Berger, C.; de Heer, W. A. Thermoelectric Effect in High Mobility Single Layer Epitaxial Graphene. Appl. Phys. Lett. 2011, 99, 133102. doi:10.1063/1.3641424
  • Liu, X.; Wang, D.; Wei, P.; Zhu, L.; Shi, J. Effect of Carrier Mobility on Magnetothermoelectric Transport Properties of Graphene. Phys. Rev. B. 2012, 86, 155414. doi:10.1103/PhysRevB.86.155414
  • Babichev, A. V.; Gasumyants, V. E.; Butko, V. Y. Resistivity and Thermopower of Graphene Made by Chemical Vapor Deposition Technique. J. Appl. Phys 2013, 113, 076101. doi:10.1063/1.4792032
  • Hong, S. J.; Park, M.; Kang, H.; Lee, M.; Soler-Delgado, D.; Shin, D. S.; Kim, K. H.; Kubatkin, S.; Jeong, D. H.; Park, Y. W.; Kim, B. H. Verification of Electron Doping in Single-Layer Graphene Due to H2 Exposure with Thermoelectric Power. Appl. Phys. Lett. 2015, 106, 142110. doi:10.1063/1.4917470
  • Nam, S. G.; Ki, D. K.; Lee, H. J. Thermoelectric Transport of Massive Dirac Fermions in Bilayer Graphene. Phys. Rev. B. 2010, 82, 245416. doi:10.1103/PhysRevB.82.245416
  • Wang, C. R.; Lu, W. S.; Hao, L.; Lee, W. L.; Lee, T. K.; Lin, F.; Cheng, I. C.; Chen, J. Z. Enhanced Thermoelectric Power in Dual-Gated Bilayer Graphene. Phys. Rev. Lett. 2011, 107, 186602. doi:10.1103/PhysRevLett.107.186602
  • Sim, D.; Liu, D.; Dong, X.; Xiao, N.; Li, S.; Zhao, Y.; Li, L. J.; Yan, Q.; Hng, H. H. Power Factor Enhancement for Few-Layered Graphene Films by Molecular Attachments. J. Phys. Chem. C. 2011, 115, 1780–1785. doi:10.1021/jp1103609
  • Mahmoud, L.; Alhwarai, M.; Samad, Y. A.; Mohammad, B.; Laio, K.; Elnaggar, I. Characterization of a Graphene-Based Thermoelectric Generator Using a Cost-Effective Fabrication Process. Energy Procedia 2015, 75, 615–620. doi:10.1016/j.egypro.2015.07.466
  • Gao, J.; Liu, C.; Miao, L.; Wang, X.; Peng, Y.; Chen, Y. Enhanced Power Factor in Flexible Reduced Graphene Oxide/Nanowires Hybrid Films for Thermoelectrics. RSC Adv. 2016, 6, 31580–31587. doi:10.1039/C6RA00916F
  • Liang, B.; Song, Z.; Wang, M.; Wang, L.; Jiang, W. Fabrication and Thermoelectric Properties of Graphene/Composite Materials. J. Nanomater 2013, 2013, 1–5. doi:10.1155/2013/210767
  • Dong, J.; Liu, W.; Li, H.; Su, X.; Tang, X.; Uher, C. In Situ Synthesis and Thermoelectric Properties of PbTe–Graphene Nanocomposites by Utilizing a Facile and Novel Wet Chemical Method. J. Mater. Chem. A. 2013, 1, 12503–12511. doi:10.1039/c3ta12494k
  • Reshak, A.; Khan, S. A.; Auluck, S. Thermoelectric Properties of a Single Graphene Sheet and Its Derivatives. J. Mater. Chem. C. 2014, 2, 2346–2352. doi:10.1039/c3tc32260b
  • Hossain, M. S.; Al-Dirini, F.; Hossain, F. M.; Skafidas, E. High Performance Graphene Nano-Ribbon Thermoelectric Devices by Incorporation and Dimensional Tuning of Nanopores. Sci. Rep 2015, 5, 1–12. doi:10.1038/srep11297.
  • Algharagholy, L. A.; Al-Galiby, Q.; Marhoon, H. A.; Sadeghi, H.; Abduljalil, H. M.; Lambert, C. J. Tuning Thermoelectric Properties of graphene/boron nitride heterostructures. Nanotechnology 2015, 26, 475401. doi:10.1088/0957-4484/26/47/475401
  • Koniakhin, S. V.; Eidelman, E. D. Phonon Drag Thermopower in Graphene in Equipartition Regime. EPL 2013, 103, 37006. doi:10.1209/0295-5075/103/37006
  • Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh Electron Mobility in Suspended Graphene. Solid State Commun 2008, 146, 351–355. doi:10.1016/j.ssc.2008.02.024
  • Amollo, T. A.; Mola, G. T.; Kirui, M. S. K.; Nyamori, V. O. Graphene for Thermoelectric Applications: Prospects and Challenges. Crit. Rev. Solid State Mater. Sci 2018, 43, 133–157. doi:10.1080/10408436.2017.1300871
  • Wei, P.; Bao, W.; Pu, Y.; Lau, C. N.; Shi, J. Anomalous Thermoelectric Transport of Dirac Particles in Graphene. Phys. Rev. Lett. 2009, 102, 166808. doi:10.1103/PhysRevLett.102.166808
  • Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer graphene. Science 2008, 321, 385–388. doi:10.1126/science.1157996
  • Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Approaching Ballistic Transport in Suspended Graphene. Nat. Nanotechnol. 2008, 3, 491–495. doi:10.1038/nnano.2008.199
  • Geim, A. K.; Novoselov, K. S. The Rise of Graphene. In Nanoscience and Technology: A Collection of Reviews from Nature Journals, Singapore: World Scientific, 2010; pp 11–19
  • Xiao, N.; Dong, X.; Song, L.; Liu, D.; Tay, YYan.; Wu, S.; Li, L.-J.; Zhao, Y.; Yu, T.; Zhang, H.; et al. Enhanced Thermopower of Graphene Films with Oxygen Plasma Treatment. Acs Nano. 2011, 5, 2749–2755. doi:10.1021/nn2001849
  • Feng, B.; Xie, J.; Cao, G.; Zhu, T.; Zhao, X. Enhanced Thermoelectric Properties of p-Type CoSb3/Graphene Nanocomposite. J. Mater. Chem. A. 2013, 1, 13111–13119. doi:10.1039/c3ta13202a
  • Suh, D.; Lee, S.; Mun, H.; Park, S. H.; Lee, K. H.; Kim, S. W.; Choi, J. Y.; Baik, S. Enhanced Thermoelectric Performance of Bi0.5Sb1.5Te3-Expanded Graphene Composites by Simultaneous Modulation of Electronic and Thermal Carrier Transport. Nano Energy 2015, 13, 67–76. doi:10.1016/j.nanoen.2015.02.001
  • Xu, Y.; Li, Z.; Duan, W. Thermal and Thermoelectric Properties of Graphene. Small 2014, 10, 2182–2199. doi:10.1002/smll.201303701
  • Balandin, A. A.; Ghosh, S.; Teweldebrhan, D.; Calizo, I.; Bao, W.; Miao, F.; Lau, C. N. Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Silicon Nanoelectronics. In 2008 IEEE Silicon Nanoelectronics Workshop, IEEE: 2008; pp 1–2
  • Balandin, A. A. Thermal Properties of Graphene and Nanostructured Carbon Materials. Nat. Mater. 2011, 10, 569–581. doi:10.1038/nmat3064
  • Chen, S.; Moore, A. L.; Cai, W.; Suk, J. W.; An, J.; Mishra, C.; Amos, C.; Magnuson, C. W.; Kang, J.; Shi, L.; Ruoff, R. S. Raman Measurements of Thermal Transport in Suspended Monolayer Graphene of Variable Sizes in Vacuum and Gaseous Environments. ACS Nano. 2011, 5, 321–328. doi:10.1021/nn102915x
  • Zheng, Q.; Kim, J. K. Graphene for Transparent Conductors: Synthesis, Properties and Applications. New York, NY: Springer 2015; Vol. 23.
  • Finefrock, S. W.; Fang, H.; Yang, H.; Darsono, H.; Wu, Y. Large-Scale Solution-Phase Production of Bi2Te3 and PbTe Nanowires Using Te Nanowire Templates. Nanoscale 2014, 6, 7872–7876. doi:10.1039/c4nr01191k
  • Zuev, Y. M.; Lee, J. S.; Galloy, C.; Park, H.; Kim, P. Diameter Dependence of the Transport Properties of Antimony Telluride Nanowires. Nano Lett. 2010, 10, 3037–3040. doi:10.1021/nl101505q
  • Wang, K.; Liang, H. W.; Yao, W. T.; Yu, S. H. Templating Synthesis of Uniform Bi2Te3 Nanowires with High Aspect Ratio in Triethylene Glycol (TEG) and Their Thermoelectric Performance. J. Mater. Chem. 2011, 21, 15057–15062. doi:10.1039/c1jm12384j
  • Hong, S.; Kim, E. S.; Kim, W.; Jeon, S.-J.; Lim, S. C.; Kim, K. H.; Lee, H.-J.; Hyun, S.; Kim, D.; Choi, J.-Y.; et al. A Hybridized Graphene Carrier Highway for Enhanced Thermoelectric Power Generation. Phys. Chem. Chem. Phys. 2012, 14, 13527–13531. doi:10.1039/c2cp42936e
  • Ju, H.; Kim, J. Preparation and Structure Dependent Thermoelectric Properties of Nanostructured Bulk Bismuth Telluride with Graphene. J. Alloys Compd. 2016, 664, 639–647. doi:10.1016/j.jallcom.2016.01.002
  • Ju, H.; Kim, J. The Effect of Temperature on Thermoelectric Properties of n-type Bi2Te3 Nanowire/Graphene Layer-by-Layer Hybrid Composites. Dalton Trans. 2015, 44, 11755–11762. doi:10.1039/c5dt00897b
  • Sutter, E.; Huang, Y.; Komsa, H. P.; Ghorbani-Asl, M.; Krasheninnikov, A. V.; Sutter, P. Electron-Beam Induced Transformations of Layered Tin Dichalcogenides. Nano Lett. 2016, 16, 4410–4416. doi:10.1021/acs.nanolett.6b01541
  • Huang, Y.; Sutter, E.; Sadowski, J. T.; Cotlet, M.; Monti, O. L. A.; Racke, D. A.; Neupane, M. R.; Wickramaratne, D.; Lake, R. K.; Parkinson, B. A.; Sutter, P. Tin Disulfide-an Emerging Layered Metal Dichalcogenide Semiconductor: Materials Properties and Device Characteristics. ACS Nano. 2014, 8, 10743–10755. doi:10.1021/nn504481r
  • Liu, Y.; Kang, H.; Jiao, L.; Chen, C.; Cao, K.; Wang, Y.; Yuan, H. Exfoliated-SnS2 Restacked on Graphene as a High-Capacity, High-Rate, and Long-Cycle Life Anode for Sodium Ion Batteries. Nanoscale 2015, 7, 1325–1332. doi:10.1039/c4nr05106h
  • Son, J. S.; Zhang, H.; Jang, J.; Poudel, B.; Waring, A.; Nally, L.; Talapin, D. V. All-Inorganic Nanocrystals as a Glue for BiSbTe Grains: Design of Interfaces in Mesostructured Thermoelectric Materials. Angew. Chem. Int. Ed. Engl. 2014, 53, 7466–7470. doi:10.1002/anie.201402026
  • Liu, W. S.; Zhang, Q.; Lan, Y.; Chen, S.; Yan, X.; Zhang, Q.; Wang, H.; Wang, D.; Chen, G.; Ren, Z. Thermoelectric Property Studies on Cu‐Doped n‐Type CuxBi2Te2.7Se0.3 Nanocomposites. Adv. Energy Mater. 2011, 1, 577–587. doi:10.1002/aenm.201100149
  • Han, M. K.; Kim, S.; Kim, H. Y.; Kim, S. J. An Alternative Strategy to Construct Interfaces in Bulk Thermoelectric Material: nanostructured Heterophase Bi2Te3/Bi2S3. RSC Adv. 2013, 3, 4673–4679. doi:10.1039/c3ra23197f
  • Zhao, L.; He, Y.; Zhang, H.; Yi, L.; Wu, J. Enhancing the Thermoelectric Property of Bi2Te3 through a Facile Design of Interfacial Phonon Scattering. J. Alloys Compd 2018, 768, 659–666. doi:10.1016/j.jallcom.2018.07.324
  • Liu, C. J.; Lai, H. C.; Liu, Y. L.; Chen, L. R. High Thermoelectric Figure-of-Merit in p-Type Nanostructured (Bi, Sb)2Te3 Fabricated via Hydrothermal Synthesis and Evacuated-and-Encapsulated Sintering. J. Mater. Chem. 2012, 22, 4825–4831. doi:10.1039/c2jm15185e
  • Tynell, T.; Karppinen, M. Atomic Layer Deposition of ZnO: A Review. Semicond. Sci. Technol. 2014, 29, 043001. doi:10.1088/0268-1242/29/4/043001
  • Liu, D.; Li, X.; de Castro Borlido, P. M.; Botti, S.; Schmechel, R.; Rettenmayr, M. Anisotropic Layered Bi2Te3-In2Te3 Composites: control of Interface Density for Tuning of Thermoelectric Properties. Sci. Rep. 2017, 7, 43611. doi:10.1038/srep43611
  • Lim, S. S.; Kim, K. C.; Lee, S.; Park, H. H.; Baek, S. H.; Kim, J. S.; Kim, S. K. Carrier Modulation in Bi2Te3-Based Alloys via Interfacial Doping with Atomic Layer Deposition. Coatings 2020, 10, 572. doi:10.3390/coatings10060572
  • Subramanian, B.; Sanjeeviraja, C.; Jayachandran, M. Brush Plating of Tin (II) Selenide Thin Films. J. Cryst. Growth 2002, 234, 421–426. doi:10.1016/S0022-0248(01)01697-9
  • Patel, T.; Vaidya, R.; Patel, S. G. Growth and Transport Properties of Tin Monosulphoselenide Single Crystals. J. Cryst. Growth 2003, 253, 52–58. doi:10.1016/S0022-0248(03)01002-9
  • Nariya, B. B.; Dasadia, A. K.; Bhayani, M. K.; Patel, A. J.; Jani, A. R. Electrical Transport Properties of SnS and SnSe Single Crystals Grown by Direct Vapour Transport Technique. Chalcogenide Letters 2009, 6, 549 – 554
  • Agarwal, A. Synthesis of Laminar SnSe Crystals by a Chemical Vapour Transport Technique. J. Cryst. Growth 1998, 183, 347–351. doi:10.1016/S0022-0248(97)00418-1
  • Maier, H.; Daniel, D. SnSe Single Crystals: sublimation Growth, Deviation from Stoichiometry and Electrical Properties. Jem. 1977, 6, 693–704. doi:10.1007/BF02660344
  • Zhao, L. D.; Tan, G.; Hao, S.; He, J.; Pei, Y.; Chi, H.; Wang, H.; Gong, S.; Xu, H.; Dravid, V. P., Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2016, 351, 141–144. doi:10.1126/science.aad3749
  • Wei, T. R.; Wu, C. F.; Zhang, X.; Tan, Q.; Sun, L.; Pan, Y.; Li, J. F. Thermoelectric Transport Properties of Pristine and Na-doped SnSe(1-x)Te(x) polycrystals. Phys. Chem. Chem. Phys. 2015, 17, 30102–30109. doi:10.1039/c5cp05510e
  • Wei, T. R.; Tan, G.; Wu, C. F.; Chang, C.; Zhao, L. D.; Li, J. F.; Snyder, G. J.; Kanatzidis, M. G. Thermoelectric Transport Properties of Polycrystalline SnSe Alloyed with PbSe. Appl. Phys. Lett. 2017, 110, 053901. doi:10.1063/1.4975603
  • Zhang, Q.; Chere, E. K.; Sun, J.; Cao, F.; Dahal, K.; Chen, S.; Chen, G.; Ren, Z. Studies on Thermoelectric Properties of n‐Type Polycrystalline SnSe1‐xSx by Iodine Doping. Adv. Energy Mater. 2015, 5, 1500360. doi:10.1002/aenm.201500360
  • Chen, C. L.; Wang, H.; Chen, Y. Y.; Day, T.; Snyder, G. J. Thermoelectric Properties of p-Type Polycrystalline SnSe Doped with Ag. J. Mater. Chem. A 2014, 2, 11171–11176. doi:10.1039/C4TA01643B
  • Popuri, S. R.; Pollet, M.; Decourt, R.; Morrison, F. D.; Bennett, N. S.; Bos, J. W. Large Thermoelectric Power Factors and Impact of Texturing on the Thermal Conductivity in Polycrystalline SnSe. J. Mater. Chem. C. 2016, 4, 1685–1691. doi:10.1039/C6TC00204H
  • Fu, Y.; Xu, J.; Liu, G.-Q.; Yang, J.; Tan, X.; Liu, Z.; Qin, H.; Shao, H.; Jiang, H.; Liang, B.; Jiang, J. Enhanced Thermoelectric Performance in p-Type Polycrystalline SnSe Benefiting from Texture Modulation. J. Mater. Chem. C. 2016, 4, 1201–1207. doi:10.1039/C5TC03652F
  • Li, S.; Li, X.; Ren, Z.; Zhang, Q. Recent Progress towards High Performance of Tin Chalcogenide Thermoelectric Materials. J. Mater. Chem. A. 2018, 6, 2432–2448. doi:10.1039/C7TA09941J
  • Zhao, L.-D.; Tan, G.; Hao, S.; He, J.; Pei, Y.; Chi, H.; Wang, H.; Gong, S.; Xu, H.; Dravid, V. P.; et al. Ultrahigh Power Factor and Thermoelectric Performance in hole-doped single-crystal SnSe. Science 2016, 351, 141–144. doi:10.1126/science.aad3749
  • Wang, Z.; Fan, C.; Shen, Z.; Hua, C.; Hu, Q.; Sheng, F.; Lu, Y.; Fang, H.; Qiu, Z.; Lu, J. Defects Controlled Hole Doping and Multivalley Transport in SnSe Single Crystals. Nat. Commun 2018, 9, 1–9. doi:10.1038/s41467-017-02566-1.
  • Liu, X.; Li, S.; Liu, T.; Zhu, W.; Wang, R.; Xiao, Y.; Pan, F. Tuning SnSe/SnS Hetero-Interfaces to Enhance Thermoelectric Performance. Funct. Mater. Lett. 2018, 11, 1850069. doi:10.1142/S1793604718500698
  • Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-Layer MoS2 Transistors. Nat. Nanotechnol. 2011, 6, 147–150. doi:10.1038/nnano.2010.279
  • Liu, L.; Kumar, S. B.; Ouyang, Y.; Guo, J. Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors. IEEE Trans. Electron Devices 2011, 58, 3042–3047. doi:10.1109/TED.2011.2159221
  • Brar, V. W.; Sherrott, M. C.; Jariwala, D. Emerging Photonic Architectures in Two-Dimensional Opto-Electronics. Chem. Soc. Rev. 2018, 47, 6824–6844. doi:10.1039/c8cs00206a
  • Wang, J.; Xie, F.; Cao, X. H.; An, S. C.; Zhou, W. X.; Tang, L. M.; Chen, K. Q. Excellent Thermoelectric Properties in Monolayer WSe2 Nanoribbons Due to Ultralow Phonon Thermal Conductivity. Sci. Rep. 2017, 7, 1–8. doi:10.1038/srep41418.
  • Chen, K. X.; Lyu, S. S.; Luo, Z. Y.; Fu, Y. X.; Heng, Y.; Mo, D. C. Theoretical Design of a New Family of Two-Dimensional Topological Insulators. Phys. Chem. Chem. Phys. 2017, 19, 7481–7485. doi:10.1039/c6cp08670e
  • Ouyang, Y.; Guo, J. A Theoretical Study on Thermoelectric Properties of Graphene Nanoribbons. Appl. Phys. Lett. 2009, 94, 263107. doi:10.1063/1.3171933
  • Tran, V. T.; Saint-Martin, J.; Dollfus, P.; Volz, S. Optimizing the Thermoelectric Performance of Graphene Nano-Ribbons without Degrading the Electronic Properties. Sci. Rep 2017, 7, 1–11. doi:10.1038/s41598-017-02230-0.
  • Ma, D.; Wan, X.; Yang, N. Unexpected Thermal Conductivity Enhancement in Pillared Graphene Nanoribbon with Isotopic Resonance. Phys. Rev. B. 2018, 98, 245420. doi:10.1103/PhysRevB.98.245420
  • Yang, K.; Cahangirov, S.; Cantarero, A.; Rubio, A.; D'Agosta, R. Thermoelectric Properties of Atomically Thin Silicene and Germanene Nanostructures. Phys. Rev. B. 2014, 89, 125403. doi:10.1103/PhysRevB.89.125403
  • Zberecki, K.; Swirkowicz, R.; Barnaś, J. Spin Effects in Thermoelectric Properties of Al-and P-Doped Zigzag Silicene Nanoribbons. Phys. Rev. B. 2014, 89, 165419. doi:10.1103/PhysRevB.89.165419
  • Zhang, J.; Liu, H. J.; Cheng, L.; Wei, J.; Liang, J. H.; Fan, D. D.; Shi, J.; Tang, X. F.; Zhang, Q. J. Phosphorene Nanoribbon as a Promising Candidate for Thermoelectric Applications. Sci. Rep 2014, 4, 1–8. doi:10.1038/srep06452.
  • Felix, I. M.; Pereira, L. F. C. Thermal Conductivity of Graphene-hBN Superlattice Ribbons. Sci. Rep 2018, 8, 1–10. doi:10.1038/s41598-018-20997-8.
  • Zhang, Z.; Xie, Y.; Peng, Q.; Chen, Y. A Theoretical Prediction of Super High-Performance Thermoelectric Materials Based on MoS2/WS2 Hybrid Nanoribbons. Sci. Rep 2016, 6, 1–8. doi:10.1038/srep21639.
  • Yokomizo, Y.; Nakamura, J. Giant Seebeck Coefficient of the Graphene/h-BN Superlattices. Appl. Phys. Lett. 2013, 103, 113901. doi:10.1063/1.4820820
  • Fan, D. D.; Liu, H. J.; Cheng, L.; Jiang, P. H.; Shi, J.; Tang, X. F. MoS2 Nanoribbons as Promising Thermoelectric Materials. Appl. Phys. Lett. 2014, 105, 133113. doi:10.1063/1.4897349
  • Oh, J.; Kim, Y.; Chung, S.; Kim, H.; Son, J. G. Fabrication of a MoS2/Graphene Nanoribbon Heterojunction Network for Improved Thermoelectric Properties. Adv. Mater. Interfaces 2019, 6, 1901333. doi:10.1002/admi.201901333
  • Li, S.; Wang, Y.; Chen, C.; Li, X.; Xue, W.; Wang, X.; Zhang, Z.; Cao, F.; Sui, J.; Liu, X.; Zhang, Q. Heavy Doping by Bromine to Improve the Thermoelectric Properties of n-type Polycrystalline SnSe. Adv Sci (Weinh). 2018, 5, 1800598. doi:10.1002/advs.201800598
  • Cunningham, G.; Lotya, M.; McEvoy, N.; Duesberg, G. S.; van der Schoot, P.; Coleman, J. N. Percolation Scaling in Composites of Exfoliated MoS2 Filled with Nanotubes and graphene. Nanoscale 2012, 4, 6260–6264. doi:10.1039/c2nr31782f
  • Wu, J.; McLachlan, D. S. Percolation Exponents and Thresholds Obtained from the Nearly Ideal Continuum Percolation System Graphite-Boron Nitride. Phys. Rev. B. 1997, 56, 1236–1248. doi:10.1103/PhysRevB.56.1236
  • Kirkpatrick, S. Percolation and Conduction. Rev. Mod. Phys. 1973, 45, 574–588. doi:10.1103/RevModPhys.45.574
  • Su, X.; Fu, F.; Yan, Y.; Zheng, G.; Liang, T.; Zhang, Q.; Cheng, X.; Yang, D.; Chi, H.; Tang, X. Self-Propagating High-Temperature Synthesis for Compound Thermoelectrics and New Criterion for Combustion Processing. Nat. Commun 2014, 5, 1–7. doi:10.1038/ncomms5908.
  • Zhao, L. l.; Wang, X. l.; Wang, J. Y.; Cheng, Z. X.; Dou, S. X.; Wang, J.; Liu, L. Q. Superior Intrinsic Thermoelectric Performance with zT of 1.8 in Single-Crystal and Melt-Quenched Highly Dense Cu2-xSe Bulks. Sci. Rep. 2015, 5, 1–6. doi:10.1038/srep07671.
  • Liu, F. S.; Gong, Z. N.; Huang, M. J.; Ao, W. Q.; Li, Y.; Li, J. Q. Enhanced Thermoelectric Properties of β-Cu2Se by Incorporating CuGaSe2. J. Alloys Compd 2016, 688, 521–526. doi:10.1016/j.jallcom.2016.07.218
  • Uher, C. Recent Trends in Thermoelectric Materials Research II. Academic Press: San Diego, CA, 2001; Vol. 69, p 139–253.
  • Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805. doi:10.1103/PhysRevLett.105.136805
  • Yadav, S.; Chaudhary, S.; Pandya, D. K. Effect of 2D MoS2 and Graphene Interfaces with CoSb3 Nanoparticles in Enhancing Thermoelectric Properties of 2D MoS2-CoSb3 and Graphene-CoSb3 Nanocomposites. Ceram. Int 2018, 44, 10628–10634. doi:10.1016/j.ceramint.2018.03.090
  • Zhao, W.; Liu, Z.; Sun, Z.; Zhang, Q.; Wei, P.; Mu, X.; Zhou, H.; Li, C.; Ma, S.; He, D.; et al. Superparamagnetic Enhancement of Thermoelectric Performance. Nature 2017, 549, 247–251. doi:10.1038/nature23667
  • Zong, P.; Chen, X.; Zhu, Y.; Liu, Z.; Zeng, Y.; Chen, L. Construction of a 3D-rGO Network-Wrapping Architecture in a YbyCo4Sb12/rGO Composite for Enhancing the Thermoelectric Performance. J. Mater. Chem. A. 2015, 3, 8643–8649. doi:10.1039/C5TA01594D
  • Girard, S. N.; He, J.; Zhou, X.; Shoemaker, D.; Jaworski, C. M.; Uher, C.; Dravid, V. P.; Heremans, J. P.; Kanatzidis, M. G. High Performance Na-Doped PbTe–PbS Thermoelectric Materials: electronic Density of States Modification and Shape-Controlled Nanostructures. J. Am. Chem. Soc. 2011, 133, 16588–16597. doi:10.1021/ja206380h
  • Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, L.; Snyder, G. J. Convergence of Electronic Bands for High Performance Bulk Thermoelectrics. Nature 2011, 473, 66–69. doi:10.1038/nature09996
  • Korkosz, R. J.; Chasapis, T. C.; Lo, S-h.; Doak, J. W.; Kim, Y. J.; Wu, C.-I.; Hatzikraniotis, E.; Hogan, T. P.; Seidman, D. N.; Wolverton, C.; et al. High ZT in p-Type (PbTe)1–2x (PbSe)x(PbS)x Thermoelectric Materials. J. Am. Chem. Soc. 2014, 136, 3225–3237. doi:10.1021/ja4121583
  • Ding, D.; Wang, D.; Zhao, M.; Lv, J.; Jiang, H.; Lu, C.; Tang, Z. Interface Engineering in Solution‐Processed Nanocrystal Thin Films for Improved Thermoelectric Performance. Adv. Mater. 2017, 29, 1603444. doi:10.1002/adma.201603444
  • Xiao, Y.; Wang, D.; Zhang, Y.; Chen, C.; Zhang, S.; Wang, K.; Wang, G.; Pennycook, S. J.; Snyder, G. J.; Wu, H.; Zhao, L.-D. Band Sharpening and Band Alignment Enable High Quality Factor to Enhance Thermoelectric Performance in n-Type PbS. J. Am. Chem. Soc. 2020, 142, 4051–4060. doi:10.1021/jacs.0c00306
  • Zhang, L.; Wang, J.; Cheng, Z.; Sun, Q.; Li, Z.; Dou, S. Lead-Free SnTe-Based Thermoelectrics: Enhancement of Thermoelectric Performance by Doping with Gd/Ag. J. Mater. Chem. A. 2016, 4, 7936–7942. doi:10.1039/C6TA01994C
  • Luo, J.; You, L.; Zhang, J.; Guo, K.; Zhu, H.; Gu, L.; Yang, Z.; Li, X.; Yang, J.; Zhang, W. Enhanced Average Thermoelectric Figure of Merit of the PbTe-SrTe-MnTe Alloy. ACS Appl Mater Interfaces 2017, 9, 8729–8736. doi:10.1021/acsami.6b16060
  • Jood, P.; Ohta, M.; Yamamoto, A.; Kanatzidis, M. G. Excessively Doped PbTe with Ge-Induced Nanostructures Enables High-Efficiency Thermoelectric Modules. Joule 2018, 2, 1339–1355. doi:10.1016/j.joule.2018.04.025
  • Su, T.; Jia, X.; Ma, H.; Guo, J.; Jiang, Y.; Dong, N.; Deng, L.; Zhao, X.; Zhu, T.; Wei, C. Thermoelectric Properties of Nonstoichiometric PbTe Prepared by HPHT. J. Alloys Compd 2009, 468, 410–413. doi:10.1016/j.jallcom.2008.01.012
  • Li, Y.; Mei, D.; Wang, H.; Yao, Z.; Zhu, T.; Chen, S. Reduced Lattice Thermal Conductivity in Nanograined Na-Doped PbTe Alloys by Ball Milling and Semisolid Powder Processing. Mater. Lett 2015, 140, 103–106. doi:10.1016/j.matlet.2014.11.015
  • Liu, W. D.; Wang, D. Z.; Liu, Q.; Zhou, W.; Shao, Z.; Chen, Z. G. High‐Performance GeTe‐Based Thermoelectrics: From Materials to Devices. Adv. Energy Mater. 2020, 10, 2000367. doi:10.1002/aenm.202000367
  • Xing, T.; Song, Q.; Qiu, P.; Zhang, Q.; Xia, X.; Liao, J.; Liu, R.; Huang, H.; Yang, J.; Bai, S.; et al. Superior Performance and High Service Stability for GeTe-Based Thermoelectric Compounds. Natl. Sci. Rev. 2019, 6, 944–954. doi:10.1093/nsr/nwz052
  • Nshimyimana, E.; Hao, S.; Su, X.; Zhang, C.; Liu, W.; Yan, Y.; Uher, C.; Wolverton, C.; Kanatzidis, M. G.; Tang, X. Discordant Nature of Cd in GeTe Enhances Phonon Scattering and Improves Band Convergence for High Thermoelectric Performance. J. Mater. Chem. A. 2020, 8, 1193–1204. doi:10.1039/C9TA10436D
  • Qiu, X.; Zheng, Q.; Lu, X.; Fan, S.; Zhou, X.; Wang, L.; Jiang, W. Effect of Bi Doping on Thermoelectric Properties of Ge0.90−xPb0.10BixTe Compounds. Mater. Sci. Semicond. Process 2020, 109, 104955. doi:10.1016/j.mssp.2020.104955
  • Chattopadhyay, T.; Boucherle, J. X.; vonSchnering, H. G. Neutron Diffraction Study on the Structural Phase Transition in GeTe. J. Phys. C: Solid State Phys. 1987, 20, 1431–1440. doi:10.1088/0022-3719/20/10/012
  • Lewis, J. E.; Rodot, H.; Haen, P. The Low‐Temperature Thermoelectric Power and Thermal Conductivity of GeTe and of Some GeTe‐MnTe Alloys. Phys. Status Solidi (b) 1968, 29, 743–754. doi:10.1002/pssb.19680290224.
  • Yang, L.; Li, J. Q.; Chen, R.; Li, Y.; Liu, F. S.; Ao, W. Q. Influence of Se Substitution in GeTe on Phase and Thermoelectric Properties. Journal of Elec. Materi. 2016, 45, 5533–5539. doi:10.1007/s11664-016-4770-4
  • Dong, Y.; Li, H.; Xu, G. Thermoelectric Performance of (GeTe)1−x (Sb2Te3)x Fabricated by High Pressure Sintering Method. Mater. Res. Express 2020, 6, 1250h5. doi:10.1088/2053-1591/ab6c1f
  • Zhang, Q.; Ti, Z.; Zhu, Y.; Zhang, Y.; Cao, Y.; Li, S.; Wang, M.; Li, D.; Zou, B.; Hou, Y.; et al. Achieving Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in GeTe Alloys via Introducing Cu2Te Nanocrystals and Resonant Level Doping. ACS Nano. 2021, 15, 19345–19356. doi:10.1021/acsnano.1c05650
  • Zhang, C.; de la Mata, M.; Li, Z.; Belarre, F. J.; Arbiol, J.; Khor, K. A.; Poletti, D.; Zhu, B.; Yan, Q.; Xiong, Q. Enhanced Thermoelectric Performance of Solution-Derived Bismuth Telluride Based Nanocomposites via Liquid-Phase Sintering. Nano Energy 2016, 30, 630–638. doi:10.1016/j.nanoen.2016.10.056
  • Chu, F.; Zhang, Q.; Zhou, Z.; Hou, D.; Wang, L.; Jiang, W. Enhanced Thermoelectric and Mechanical Properties of Na-Doped Polycrystalline SnSe Thermoelectric Materials via CNTs Dispersion. J. Alloys Compd 2018, 741, 756–764. doi:10.1016/j.jallcom.2018.01.178
  • Tang, G.; Liu, J.; Zhang, J.; Li, D.; Rara, K. H.; Xu, R.; Lu, W.; Liu, J.; Zhang, Y.; Feng, Z. Realizing High Thermoelectric Performance below Phase Transition Temperature in Polycrystalline SnSe via Lattice Anharmonicity Strengthening and Strain Engineering. ACS Appl Mater Interfaces 2018, 10, 30558–30565. doi:10.1021/acsami.8b10056
  • Ge, Z. H.; Qiu, Y.; Chen, Y. X.; Chong, X.; Feng, J.; Liu, Z. K.; He, J. Multipoint Defect Synergy Realizing the Excellent Thermoelectric Performance of n‐Type Polycrystalline SnSe via Re Doping. Adv. Funct. Mater. 2019, 29, 1902893. doi:10.1002/adfm.201902893
  • Peng, K.; Lu, X.; Zhan, H.; Hui, S.; Tang, X.; Wang, G.; Dai, J.; Uher, C.; Wang, G.; Zhou, X. Broad Temperature Plateau for High ZT s in Heavily Doped p-Type SnSe Single Crystals. Energy Environ. Sci. 2016, 9, 454–460. doi:10.1039/C5EE03366G
  • Pei, Y.; Tan, G.; Feng, D.; Zheng, L.; Tan, Q.; Xie, X.; Gong, S.; Chen, Y.; Li, J. ‐F.; He, J.; et al. Integrating Band Structure Engineering with All‐Scale Hierarchical Structuring for High Thermoelectric Performance in PbTe System. Adv. Energy Mater. 2017, 7, 1601450. doi:10.1002/aenm.201601450
  • Kim, M. S.; Lee, W. J.; Cho, K. H.; Ahn, J. P.; Sung, Y. M. Spinodally Decomposed PbSe-PbTe Nanoparticles for High-Performance Thermoelectrics: Enhanced Phonon Scattering and Unusual Transport Behavior. ACS Nano. 2016, 10, 7197–7207. doi:10.1021/acsnano.6b03696
  • Yamini, S. A.; Mitchell, D. R.; Gibbs, Z. M.; Santos, R.; Patterson, V.; Li, S.; Pei, Y. Z.; Dou, S. X.; Jeffrey Snyder, G. Heterogeneous Distribution of Sodium for High Thermoelectric Performance of p‐Type Multiphase Lead‐Chalcogenides. Adv. Energy Mater. 2015, 5, 1501047. doi:10.1002/aenm.201501047
  • Zhang, Q.; Wang, H.; Zhang, Q.; Liu, W.; Yu, B.; Wang, H.; Wang, D.; Ni, G.; Chen, G.; Ren, Z. Effect of Silicon and Sodium on Thermoelectric Properties of Thallium-Doped Lead Telluride-Based Materials. Nano Lett. 2012, 12, 2324–2330. doi:10.1021/nl3002183
  • Zhang, Q.; Cao, F.; Liu, W.; Lukas, K.; Yu, B.; Chen, S.; Opeil, C.; Broido, D.; Chen, G.; Ren, Z. Heavy Doping and Band Engineering by Potassium to Improve the Thermoelectric Figure of Merit in p-Type PbTe, PbSe, and PbTe1–ySey. J. Am. Chem. Soc. 2012, 134, 10031–10038. doi:10.1021/ja301245b
  • Shi, X.; Zheng, K.; Hong, M.; Liu, W.; Moshwan, R.; Wang, Y.; Qu, X.; Chen, Z. G.; Zou, J. Boosting the Thermoelectric Performance of p-Type Heavily Cu-Doped Polycrystalline SnSe via Inducing Intensive Crystal Imperfections and Defect Phonon Scattering. Chem. Sci. 2018, 9, 7376–7389. doi:10.1039/c8sc02397b
  • Fahrnbauer, F.; Souchay, D.; Wagner, G.; Oeckler, O. High Thermoelectric Figure of Merit Values of Germanium Antimony Tellurides with Kinetically Stable Cobalt Germanide Precipitates. J. Am. Chem. Soc. 2015, 137, 12633–12638. doi:10.1021/jacs.5b07856
  • Wang, J.; Liu, B.; Miao, N.; Zhou, J.; Sun, Z. I-Doped Cu2Se Nanocrystals for High-Performance Thermoelectric Applications. J. Alloys Compd 2019, 772, 366–370. doi:10.1016/j.jallcom.2018.08.291
  • Chen, Y. X.; Ge, Z. H.; Yin, M.; Feng, D.; Huang, X. Q.; Zhao, W.; He, J. Understanding of the Extremely Low Thermal Conductivity in High‐Performance Polycrystalline SnSe through Potassium Doping. Adv. Funct. Mater. 2016, 26, 6836–6845. doi:10.1002/adfm.201602652
  • Zhu, Z.; Zhang, Y.; Song, H.; Li, X. J. Enhancement of Thermoelectric Performance of Cu2Se by K Doping. Appl. Phys. A 2018, 124, 1–6. doi:10.1007/s00339-018-2299-5.
  • Zhao, W.; Liu, Z.; Wei, P.; Zhang, Q.; Zhu, W.; Su, X.; Tang, X.; Yang, J.; Liu, Y.; Shi, J.; et al. Magnetoelectric Interaction and Transport Behaviours in Magnetic Nanocomposite Thermoelectric Materials. Nat. Nanotechnol. 2017, 12, 55–60. doi:10.1038/nnano.2016.182
  • Rogl, G.; Grytsiv, A.; Rogl, P.; Peranio, N.; Bauer, E.; Zehetbauer, M.; Eibl, O. N-Type Skutterudites (R, Ba, Yb)yCo4Sb12 (R = Sr, la, mm, DD, SrMm, SrDD) Approaching ZT≈ 2.0. Acta Mater 2014, 63, 30–43. doi:10.1016/j.actamat.2013.09.039
  • Tamaki, H.; Sato, H. K.; Kanno, T. Isotropic Conduction Network and Defect Chemistry in Mg3 + δ Sb2 -Based Layered Zintl Compounds with High Thermoelectric Performance. Adv. Mater. 2016, 28, 10182–10187. doi:10.1002/adma.201603955
  • Shin, W. H.; Roh, J. W.; Ryu, B.; Chang, H. J.; Kim, H. S.; Lee, S.; Seo, W. S.; Ahn, K. Enhancing Thermoelectric Performances of Bismuth Antimony Telluride via Synergistic Combination of Multiscale Structuring and Band Alignment by FeTe2 Incorporation. ACS Appl Mater Interfaces 2018, 10, 3689–3698. doi:10.1021/acsami.7b18451
  • Shi, W.; Wu, F.; Wang, K.; Yang, J.; Song, H.; Hu, X. Preparation and Thermoelectric Properties of Yttrium-Doped Bi2Te3 Flower-like Nanopowders. Journal of Elec. Materi. 2014, 43, 3162–3168. doi:10.1007/s11664-014-3220-4
  • Lv, H. Y.; Liu, H. J.; Shi, J.; Tang, X. F.; Uher, C. Optimized Thermoelectric Performance of Bi2Te3 Nanowires. J. Mater. Chem. A. 2013, 1, 6831–6838. doi:10.1039/c3ta10804j
  • Guan, M.; Zhao, K.; Qiu, P.; Ren, D.; Shi, X.; Chen, L. Enhanced Thermoelectric Performance of Quaternary Cu2–2xAg2xSe1–x Sx Liquid-like Chalcogenides. ACS Appl. Mater. Interfaces. 2019, 11, 13433–13440. doi:10.1021/acsami.9b01643
  • Huang, Z.; Zhao, L. D. Sb2Si2Te6: A Robust New Thermoelectric Material. Trends Chem 2020, 2, 89–91. doi:10.1016/j.trechm.2019.12.006
  • Luo, Y.; Cai, S.; Hao, S.; Pielnhofer, F.; Hadar, I.; Luo, Z.-Z.; Xu, J.; Wolverton, C.; Dravid, V. P.; Pfitzner, A.; et al. High-Performance Thermoelectrics from Cellular Nanostructured Sb2Si2Te6. Joule 2020, 4, 159–175. doi:10.1016/j.joule.2019.10.010
  • Ou, C.; Hou, J.; Wei, T. R.; Jiang, B.; Jiao, S.; Li, J. F.; Zhu, H. High Thermoelectric Performance of All-Oxide Heterostructures with Carrier Double-Barrier Filtering Effect. NPG Asia Mater. 2015, 7, e182–e182. doi:10.1038/am.2015.36
  • Zhang, Y.; Li, S.; Liu, F.; Zhang, C.; Hu, L.; Ao, W.; Li, Y.; Li, J.; Xie, H.; Xiao, Y.; Pan, F. Zr Vacancy Interfaces: An Effective Strategy for Collaborative Optimization of ZrNiSn-Based Thermoelectric Performance. J. Mater. Chem. A. 2019, 7, 26053–26061. doi:10.1039/C9TA09550K
  • Lin, Y. H.; Nan, C. W.; Liu, Y.; Li, J.; Mizokawa, T.; Shen, Z. High‐Temperature Electrical Transport and Thermoelectric Power of Partially Substituted Ca3Co4O9‐Based Ceramics. J. Am. Ceramic Soc. 2007, 90, 132–136. doi:10.1111/j.1551-2916.2006.01370.x
  • Paul, B.; Lu, J.; Eklund, P. Nanostructural Tailoring to Induce Flexibility in Thermoelectric Ca3Co4O9 Thin Films. ACS Appl Mater Interfaces 2017, 9, 25308–25316. doi:10.1021/acsami.7b06301
  • Lan, J.; Lin, Y. H.; Fang, H.; Mei, A.; Nan, C. W.; Liu, Y.; Xu, S.; Peters, M. High‐Temperature Thermoelectric Behaviors of Fine‐Grained Gd‐Doped CaMnO3 Ceramics. J. Am. Ceram. Soc 2010, 93, 2121–2124. doi:10.1111/j.1551-2916.2010.03673.x
  • Okuda, T.; Nakanishi, K.; Miyasaka, S.; Tokura, Y. Large Thermoelectric Response of Metallic Perovskites: Sr1−xLaxTiO3 (0<∼ x<∼ 0. 1). Phys. Rev. B 2001, 63, 113104. doi:10.1103/PhysRevB.63.113104.
  • Shi, X. L.; Wu, H.; Liu, Q.; Zhou, W.; Lu, S.; Shao, Z.; Dargusch, M.; Chen, Z. G. SrTiO3-Based Thermoelectrics: Progress and Challenges. Nano Energy 2020, 78, 105195. doi:10.1016/j.nanoen.2020.105195
  • Gong, W.; Yun, H.; Ning, Y. B.; Greedan, J. E.; Datars, W. R.; Stager, C. V. Oxygen-Deficient SrTiO3−x, x= 0.28, 0.17, and 0.08. Crystal Growth, Crystal Structure, Magnetic, and Transport Properties. J. Solid State Chem 1991, 90, 320–330. doi:10.1016/0022-4596(91)90149-C
  • Liu, Y.; Ding, J.; Xu, B.; Lan, J.; Zheng, Y.; Zhan, B.; Zhang, B.; Lin, Y.; Nan, C. Enhanced Thermoelectric Performance of La-Doped BiCuSeO by Tuning Band Structure. Appl. Phys. Lett. 2015, 106, 233903. doi:10.1063/1.4922492
  • Ohtaki, M.; Araki, K.; Yamamoto, K. High Thermoelectric Performance of Dually Doped ZnO Ceramics. Journal of Elec. Materi. 2009, 38, 1234–1238. doi:10.1007/s11664-009-0816-1
  • Bérardan, D.; Guilmeau, E.; Maignan, A.; Raveau, B. In2O3: Ge, a Promising n-Type Thermoelectric Oxide Composite. Solid State Commun. 2008, 146, 97–101. doi:10.1016/j.ssc.2007.12.033
  • Wiebe, C.; Greedan, J.; Gardner, J.; Zeng, Z.; Greenblatt, M. Charge and Magnetic Ordering in the Electron-Doped Magnetoresistive Materials CaMnO3−δ (δ= 0.06, 0.11). Phys. Rev. B. 2001, 64, 064421. doi:10.1103/PhysRevB.64.064421
  • Flahaut, D.; Mihara, T.; Funahashi, R.; Nabeshima, N.; Lee, K.; Ohta, H.; Koumoto, K. Thermoelectrical Properties of A-Site Substituted Ca1−xRex MnO3 System. J. Appl. Phys 2006, 100, 084911. doi:10.1063/1.2362922
  • Shin, W.; Murayama, N. High Performance p-Type Thermoelectric Oxide Based on NiO. Mater. Lett 2000, 45, 302–306. doi:10.1016/S0167-577X(00)00122-1
  • Terasaki, I.; Sasago, Y.; Uchinokura, K. Large Thermoelectric Power in NaCo2O4 Single Crystals. Phys. Rev. B. 1997, 56, R12685–R12687. doi:10.1103/PhysRevB.56.R12685
  • Sui, J.; Li, J.; He, J.; Pei, Y. L.; Berardan, D.; Wu, H.; Dragoe, N.; Cai, W.; Zhao, L. D. Texturation Boosts the Thermoelectric Performance of BiCuSeO Oxyselenides. Energy Environ. Sci. 2013, 6, 2916–2920. doi:10.1039/c3ee41859f
  • Zuzok, R.; Kaiser, A. B.; Pukacki, W.; Roth, S. Thermoelectric Power and Conductivity of Iodine‐Doped ‘‘New’’polyacetylene. J. Chem. Phys. 1991, 95, 1270–1275. doi:10.1063/1.461107
  • Park, Y. W. Structure and Morphology: relation to Thermopower Properties of Conductive Polymers. Synth.Met 1991, 45, 173–182. doi:10.1016/0379-6779(91)91801-G
  • Masubuchi, S.; Kazama, S.; Mizoguchi, K.; Honda, M.; Kume, K.; Matsushita, R.; Matsuyama, T. Metallic Transport Properties in Electrochemically as-Grown and Heavily Doped Polythiophene and Poly (3-Methylthiophene). Synth. Met. 1993, 57, 4962–4967. doi:10.1016/0379-6779(93)90846-O
  • Osterholm, J. E.; Passiniemi, P.; Isotalo, H.; Stubb, H. Synthesis and Properties of FeCl4-Doped Polythiophene. Synth. Met. 1987, 18, 213–218. doi:10.1016/0379-6779(87)90881-2
  • Mateeva, N.; Niculescu, H.; Schlenoff, J.; Testardi, L. R. Correlation of Seebeck Coefficient and Electric Conductivity in Polyaniline and Polypyrrole. J. Appl. Phys 1998, 83, 3111–3117. doi:10.1063/1.367119
  • Kemp, N. T.; Kaiser, A. B.; Liu, C.-J.; Chapman, B.; Mercier, O.; Carr, A. M.; Trodahl, H. J.; Buckley, R. G.; Partridge, A. C.; Lee, J. Y.; et al. Thermoelectric Power and Conductivity of Different Types of Polypyrrole. J. Polym. Sci. B Polym. Phys. 1999, 37, 953–960. doi:10.1002/(SICI)1099-0488(19990501)37:9<953::AID-POLB7>3.0.CO;2-L
  • McGrail, B. T.; Sehirlioglu, A.; Pentzer, E. Polymer Composites for Thermoelectric Applications. Angew. Chem. Int. Ed. Engl. 2015, 54, 1710–1723. doi:10.1002/anie.201408431
  • Ju, H.; Kim, J. Chemically Exfoliated SnSe Nanosheets and Their SnSe/Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Composite Films for Polymer Based Thermoelectric Applications. ACS Nano. 2016, 10, 5730–5739. doi:10.1021/acsnano.5b07355
  • See, K. C.; Feser, J. P.; Chen, C. E.; Majumdar, A.; Urban, J. J.; Segalman, R. A. Water-Processable Polymer-Nanocrystal Hybrids for Thermoelectrics . Nano Lett. 2010, 10, 4664–4667. doi:10.1021/nl102880k
  • Wang, Y.; Zhang, S. M.; Deng, Y. Flexible Low-Grade Energy Utilization Devices Based on High-Performance Thermoelectric Polyaniline/Tellurium Nanorod Hybrid Films. J. Mater. Chem. A. 2016, 4, 3554–3559. doi:10.1039/C6TA01140C
  • Wang, H.; Yi, S. I.; Pu, X.; Yu, C. Simultaneously Improving Electrical Conductivity and Thermopower of Polyaniline Composites by Utilizing Carbon Nanotubes as High Mobility Conduits. ACS Appl Mater Interfaces 2015, 7, 9589–9597. doi:10.1021/acsami.5b01149
  • Li, D.; Luo, C.; Chen, Y.; Feng, D.; Gong, Y.; Pan, C.; He, J. High Performance Polymer Thermoelectric Composite Achieved by Carbon-Coated Carbon Nanotubes Network. ACS Appl. Energy Mater. 2019, 2, 2427–2434. doi:10.1021/acsaem.9b00334
  • Shin, S.; Roh, J. W.; Kim, H. S.; Chen, R. Role of Surfactant on Thermoelectric Behaviors of Organic-Inorganic Composites. J. Appl. Phys 2018, 123, 205106. doi:10.1063/1.5033920
  • Thongkham, W.; Lertsatitthanakorn, C.; Jiramitmongkon, K.; Tantisantisom, K.; Boonkoom, T.; Jitpukdee, M.; Sinthiptharakoon, K.; Klamchuen, A.; Liangruksa, M.; Khanchaitit, P. Self-Assembled Three-Dimensional Bi2Te3 Nanowire–PEDOT: PSS Hybrid Nanofilm Network for Ubiquitous Thermoelectrics. ACS Appl. Mater. Interfaces 2019, 11, 6624–6633. doi:10.1021/acsami.8b19767
  • Wang, L.; Zhang, Z.; Liu, Y.; Wang, B.; Fang, L.; Qiu, J.; Zhang, K.; Wang, S. Exceptional Thermoelectric Properties of Flexible Organic − Inorganic Hybrids with Monodispersed and Periodic Nanophase. Nat. Commun 2018, 9, 1–8. doi:10.1038/s41467-018-06251-9.
  • Zhao, Y.; Tang, G. S.; Yu, Z. Z.; Qi, J. S. The Effect of Graphite Oxide on the Thermoelectric Properties of Polyaniline. Carbon 2012, 50, 3064–3073. doi:10.1016/j.carbon.2012.03.001
  • Hsieh, Y. Y.; Zhang, Y.; Zhang, L.; Fang, Y.; Kanakaraaj, S. N.; Bahk, J. H.; Shanov, V. High Thermoelectric Power-Factor Composites Based on Flexible Three-Dimensional Graphene and Polyaniline. Nanoscale 2019, 11, 6552–6560. doi:10.1039/c8nr10537e
  • Wang, W.; Li, C.; Li, X.; Jia, Y.; Jiang, F.; Liu, C.; Tan, R.; Xu, J. Fabrication of Freestanding Tellurium Nanofilm and Its Thermoelectric Performance. Thin Solid Films 2018, 654, 23–29. doi:10.1016/j.tsf.2018.03.073
  • Yee, S. K.; Coates, N. E.; Majumdar, A.; Urban, J. J.; Segalman, R. A. Thermoelectric Power Factor Optimization in PEDOT:PSS tellurium nanowire hybrid composites. Phys. Chem. Chem. Phys. 2013, 15, 4024–4032. doi:10.1039/c3cp44558e
  • Bae, E. J.; Kang, Y. H.; Jang, K. S.; Lee, C.; Cho, S. Y. Solution Synthesis of telluride-based nano-barbell structures coated with PEDOT:PSS for spray-printed thermoelectric generators. Nanoscale 2016, 8, 10885–10890. doi:10.1039/c5nr07032e
  • Choi, J.; Lee, J. Y.; Lee, S. S.; Park, C. R.; Kim, H. High‐Performance Thermoelectric Paper Based on Double Carrier‐Filtering Processes at Nanowire Heterojunctions. Adv. Energy Mater. 2016, 6, 1502181. doi:10.1002/aenm.201502181
  • Du, F. P.; Cao, N. N.; Zhang, Y. F.; Fu, P.; Wu, Y. G.; Lin, Z. D.; Shi, R.; Amini, A.; Cheng, C. PEDOT:PSS/Graphene Quantum Dots Films with Enhanced Thermoelectric Properties via Strong Interfacial Interaction and Phase Separation. Sci. Rep. 2018, 8, 1–12. doi:10.1038/s41598-018-24632-4.
  • Liu, S.; Kong, J.; Chen, H.; He, C. Interfacial Energy Barrier Tuning for Enhanced Thermoelectric Performance of PEDOT Nanowire/SWNT/PEDOT:PSS Ternary Composites. ACS Appl. Energy Mater. 2019, 2, 8843–8850. doi:10.1021/acsaem.9b01834
  • Meng, C.; Liu, C.; Fan, S. A Promising Approach to Enhanced Thermoelectric Properties Using Carbon Nanotube Networks. Adv. Mater. 2010, 22, 535–539. doi:10.1002/adma.200902221
  • Ju, H.; Park, D.; Kim, J. Solution-Processable Flexible Thermoelectric Composite Films Based on Conductive Polymer/SnSe0.8S0.2 Nanosheets/Carbon Nanotubes for Wearable Electronic Applications. J. Mater. Chem. A. 2018, 6, 5627–5634. doi:10.1039/C7TA11285H

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.