792
Views
28
CrossRef citations to date
0
Altmetric
Review Article

Nucleolus-like compartmentalization of the transcription machinery in fast-growing bacterial cells

, , , &
Pages 96-106 | Received 06 Sep 2016, Accepted 05 Dec 2016, Published online: 23 Dec 2016
 

Abstract

We have learned a great deal about RNA polymerase (RNA Pol), transcription factors, and the transcriptional regulation mechanisms in prokaryotes for specific genes, operons, or transcriptomes. However, we have only begun to understand how the transcription machinery is three-dimensionally (3D) organized into bacterial chromosome territories to orchestrate the transcription process and to maintain harmony with the replication machinery in the cell. Much progress has been made recently in our understanding of the spatial organization of the transcription machinery in fast-growing Escherichia coli cells using state-of-the-art superresolution imaging techniques. Co-imaging of RNA polymerase (RNA Pol) with DNA and transcription elongation factors involved in ribosomal RNA (rRNA) synthesis, and ribosome biogenesis has revealed similarities between bacteria and eukaryotes in the spatial organization of the transcription machinery for growth genes, most of which are rRNA genes. Evidence supports the notion that RNA Pol molecules are concentrated, forming foci at the clustering of rRNA operons resembling the eukaryotic nucleolus. RNA Pol foci are proposed to be active transcription factories for both rRNA genes expression and ribosome biogenesis to support maximal growth in optimal growing conditions. Thus, in fast-growing bacterial cells, RNA Pol foci mimic eukaryotic Pol I activity, and transcription factories resemble nucleolus-like compartmentation. In addition, the transcription and replication machineries are mostly segregated in space to avoid the conflict between the two major cellular functions in fast-growing cells.

Acknowledgements

The authors acknowledge the support from the CCR core (Optical Microscopy and Analysis laboratory) for the SIM imaging system and thank Drs. De Chen, Valentin Magidson and Stephen Lockett for discussion and help.

Disclosure statement

The authors report no declarations of interest.

Additional information

Funding

This research was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 750.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.