790
Views
28
CrossRef citations to date
0
Altmetric
Review Article

Nucleolus-like compartmentalization of the transcription machinery in fast-growing bacterial cells

, , , &
Pages 96-106 | Received 06 Sep 2016, Accepted 05 Dec 2016, Published online: 23 Dec 2016

References

  • Bakshi S, Siryaporn A, Goulian M, Weisshaar JC. (2012). Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol Microbiol 85:21–38.
  • Bedinger P, Hochstrasser M, Jongeneel CV, Alberts BM. (1983). Properties of the T4 bacteriophage DNA replication apparatus: the T4 dda DNA helicase is required to pass a bound RNA polymerase molecule. Cell 34:115–23.
  • Booker BM, Deng S, Higgins NP. (2010). DNA topology of highly transcribed operons in Salmonella enterica serovar Typhimurium. Mol Microbiol 78:1348–64.
  • Boubakri H, de Septenville AL, Viguera E, Michel B. (2010). The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo. Embo J 29:145–57.
  • Bremer H, Dennis PP. (2008). Modulation of chemical composition and other parameters of the cell at different exponential growth rates. EcoSal plus 3:1–49.
  • Bubunenko M, Court DL, Al Refaii A, et al. (2013). Nus transcription elongation factors and RNase III modulate small ribosome subunit biogenesis in Escherichia coli. Mol Microbiol 87:382–93.
  • Cabrera JE, Cagliero C, Quan S, et al. (2009). Active transcription of rRNA operons condenses the nucleoid in Escherichia coli: examining the effect of transcription on nucleoid structure in the absence of transertion. J Bacteriol 191:4180–5.
  • Cabrera JE, Jin DJ. (2003). The distribution of RNA polymerase in Escherichia coli is dynamic and sensitive to environmental cues. Mol Microbiol 50:1493–505.
  • Cabrera JE, Jin DJ. (2006). Active transcription of rRNA operons is a driving force for the distribution of RNA polymerase in bacteria: effect of extrachromosomal copies of rrnB on the in vivo localization of RNA polymerase. J Bacteriol 188:4007–14.
  • Cagliero C, Grand RS, Jones MB, et al. (2013). Genome conformation capture reveals that the Escherichia coli chromosome is organized by replication and transcription. Nucleic Acids Res 41:6058–71.
  • Cagliero C, Jin DJ. (2013). Dissociation and re-association of RNA polymerase with DNA during osmotic stress response in Escherichia coli. Nucleic Acids Res 41:315–26.
  • Cagliero C, Zhou YN, Jin DJ. (2014). Spatial organization of transcription machinery and its segregation from the replisome in fast-growing bacterial cells. Nucleic Acids Res 42:13696–705.
  • Cashel M, Gentry DR, Hernandez VJ, Vinella D. (1996). The stringent response. In Escherichia coli and Salmonella: cellular and molecular biology, Neidhardt FC, ed. Washington D.C: American Society for Microbiology, 1458–96.
  • Cook PR. (1999). The organization of replication and transcription. Science 284:1790–5.
  • Cremer T, Kreth G, Koester H, et al. (2000). Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. Crit Rev Eukaryot Gene Expr 10:179–212.
  • Davis SE, Mooney RA, Kanin EI, et al. (2011). Mapping E. coli RNA polymerase and associated transcription factors and identifying promoters genome-wide. Methods Enzymol 498:449–71.
  • Durfee T, Hansen AM, Zhi H, et al. (2008). Transcription profiling of the stringent response in Escherichia coli. J Bacteriol 190:1084–96.
  • Endesfelder U, Finan K, Holden SJ, et al. (2013). Multiscale spatial organization of RNA polymerase in Escherichia coli. Biophys J 105:172–81.
  • Fiolka R, Shao L, Rego EH, et al. (2012). Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination. Proc Natl Acad Sci USA 109:5311–5.
  • French S. (1992). Consequences of replication fork movement through transcription units in vivo. Science 258:1362–5.
  • French SL, Miller OL. Jr. (1989). Transcription mapping of the Escherichia coli chromosome by electron microscopy. J Bacteriol 171:4207–16.
  • Fritz AJ, Barutcu AR, Martin-Buley L, et al. (2016). Chromosomes at work: organization of chromosome territories in the interphase nucleus. J Cell Biochem 117:9–19.
  • Goodfellow SJ, Zomerdijk JCBM. (2013). Basic mechanisms in RNA polymerase I transcription of the ribosomal RNA genes. Subcell Biochem 61:211–36.
  • Gordon GS, Sitnikov D, Webb CD, et al. (1997). Chromosome and low copy plasmid segregation in E. coli: visual evidence for distinct mechanisms. Cell 90:1113–21.
  • Grainger DC, Hurd D, Harrison M, et al. (2005). Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome. Proc Natl Acad Sci USA 102:17693–8.
  • Greenblatt J, Li J. (1981). Interaction of the sigma factor and the nusA gene protein of E. coli with RNA polymerase in the initiation-termination cycle of transcription. Cell 24:421–8.
  • Greive SJ, Lins AF, von Hippel PH. (2005). Assembly of an RNA-protein complex. Binding of NusB and NusE (S10) proteins to boxA RNA nucleates the formation of the antitermination complex involved in controlling rRNA transcription in Escherichia coli. J Biol Chem 280:36397–408.
  • Gustafsson MG. (2000). Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82–7.
  • Hariharan N, Sussman MA. (2014). Stressing on the nucleolus in cardiovascular disease. Biochim Biophys Acta 1842:798–801.
  • Herring CD, Raffaelle M, Allen TE, et al. (2005). Immobilization of Escherichia coli RNA polymerase and location of binding sites by use of chromatin immunoprecipitation and microarrays. J Bacteriol 187:6166–74.
  • Ivanova D, Taylor T, Smith SL, et al. (2015). Shaping the landscape of the Escherichia coli chromosome: replication-transcription encounters in cells with an ectopic replication origin. Nucleic Acids Res 43:7865–77.
  • Jin DJ, Cagliero C, Izard J, et al. (2016). The distribution and spatial organization of RNA polymerase in Escherichia coli: growth rate regulation and stress responses. In Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria, 2 Volume Set, Bruijn FJd, ed. Wiley, 48–63.
  • Jin DJ, Cagliero C, Martin CM, et al. (2015). The dynamic nature and territory of transcriptional machinery in the bacterial chromosome. Front Microbiol 6:497.
  • Jin DJ, Cagliero C, Zhou YN. (2012). Growth rate regulation in Escherichia coli. FEMS Microbiol Rev 36:269–87.
  • Jin DJ, Cagliero C, Zhou YN. (2013). Role of RNA polymerase and transcription in the organization of the bacterial nucleoid. Chem Rev 113:8662–82.
  • Kjeldgaard NO, Maaloe O, Schaechter M. (1958). The transition between different physiological states during balanced growth of Salmonella typhimurium. J Gen Microbiol 19:607–16.
  • Lewis PJ, Thaker SD, Errington J. (2000). Compartmentalization of transcription and translation in Bacillus subtilis. Embo J 19:710–18.
  • Liu LF, Wang JC. (1987). Supercoiling of the DNA template during transcription. Proc Natl Acad Sci U S A 84:7024–7.
  • Liu M, Durfee T, Cabrera JE, et al. (2005). Global transcriptional programs reveal a carbon source foraging strategy by Escherichia coli. J Biol Chem 280:15921–7.
  • Marceau AH, Bahng S, Massoni SC, et al. (2011). Structure of the SSB-DNA polymerase III interface and its role in DNA replication. The EMBO J 30:4236–47.
  • Marenduzzo D, Micheletti C, Cook PR. (2006). Entropy-driven genome organization. Biophys J 90:3712–21. Epub 2006 Feb 3724.
  • Margolin W. (2000). Green fluorescent protein as a reporter for macromolecular localization in bacterial cells. Methods 20:62–72.
  • Meaburn KJ, Misteli T. (2007). Cell biology: chromosome territories. Nature 445:379–781.
  • Merrikh H, Zhang Y, Grossman AD, Wang JD. (2012). Replication-transcription conflicts in bacteria. Nat Rev Microbiol 10:449–58.
  • Neidhardt FC, Bloch PL, Smith DF. (1974). Culture medium for enterobacteria. J Bacteriol 119:736–47.
  • Nielsen HJ, Youngren B, Hansen FG, Austin S. (2007). Dynamics of Escherichia coli chromosome segregation during multifork replication. J Bacteriol 189:8660–6.
  • Nodwell JR, Greenblatt J. (1993). Recognition of boxA antiterminator RNA by the E. coli antitermination factors NusB and ribosomal protein S10. Cell 72:261–8.
  • Olson MO, Dundr M. (2015). Nucleolus: structure and function. In eLS John Wiley & Sons, Ltd, 1–9.
  • Papantonis A, Cook PR. (2013). Transcription factories: genome organization and gene regulation. Chem Rev 113:8683–705.
  • Peltonen K, Colis L, Liu H, et al. (2014). A targeting modality for destruction of RNA polymerase I that possesses anticancer activity. Cancer Cell 25:77–90.
  • Quan S, Skovgaard O, McLaughlin RE, et al. (2015). Markerless Escherichia coli rrn deletion strains for genetic determination of ribosomal binding sites. G3 (Bethesda) 5:2555–7.
  • Quin JE, Devlin JR, Cameron D, et al. (2014). Targeting the nucleolus for cancer intervention. Biochim Biophys Acta 1842:802–16.
  • Reyes-Lamothe R, Possoz C, Danilova O, Sherratt DJ. (2008). Independent positioning and action of Escherichia coli replisomes in live cells. Cell 133:90–102.
  • Schaechter M, Maaloe O, Kjeldgaard NO. (1958). Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J Gen Microbiol 19:592–606.
  • Stokke C, Flatten I, Skarstad K. (2012). An easy-to-use simulation program demonstrates variations in bacterial cell cycle parameters depending on medium and temperature. PLoS One 7:e30981.
  • Stracy M, Lesterlin C, Garza de Leon F, et al. (2015). Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. Proc Natl Acad Sci USA 112:E4390–9.
  • Traxler MF, Summers SM, Nguyen HT, et al. (2008). The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli. Mol Microbiol 68:1128–48.
  • van Sluis M, McStay B. (2014). Ribosome biogenesis: achilles heel of cancer?. Genes Cancer 5:152–3.
  • Zhao ZW, Roy R, Gebhardt JC, et al. (2014). Spatial organization of RNA polymerase II inside a mammalian cell nucleus revealed by reflected light-sheet superresolution microscopy. Proc Natl Acad Sci U S A 111:681–6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.