329
Views
8
CrossRef citations to date
0
Altmetric
Articles

WEDM of layered composite: analyzing material removal and cut quality issues

& ORCID Icon
Pages 1073-1082 | Received 19 Feb 2019, Accepted 24 Apr 2019, Published online: 20 May 2019
 

ABSTRACT

The use of cladded bimaterial composites has grown in the recent past as they offer a combination of properties at low cost. But the heterogeneity which is the inherent attribute of these composites makes it challenging to accurately cut via conventional means. Therefore, thermal cutting is commonly employed for their cutting which not only produce poor cut quality and deeper heat affected zones but also demand subsequent finishing operations. Wire electric discharge cutting (WEDM) is a proficient alternate but low material removal (MRR) and widen kerf slot (KW) due to sideways sparking limit its application. Moreover, both layers of material have different thermoelectric properties and are subjected to simultaneous cutting by a single moving wire electrode which lead to produce different spark strength against both layers. In this regard, the present study aims to investigate the cutting potential of WEDM for cladded bimaterial with a prior focus on both the aforesaid issues, i.e. MRR and KW. Considering the thermoelectric nature of the WEDM, workpiece-related parameters like orientation of work surface and layer thickness of each layer are taken as control variables in addition to the WEDM process parameters. Experimental results are thoroughly analyzed using statistical and SEM analysis.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.