102
Views
0
CrossRef citations to date
0
Altmetric
Research Article

AWJC of NiTi interleaved r-GO embedded carbon/aramid fibre intermetallic laminates: Experimental investigations and optimization through BMOA

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1144-1158 | Received 08 Mar 2022, Accepted 22 Jul 2022, Published online: 28 Aug 2022
 

ABSTRACT

Laminated metal-composite structures or fiber metal laminates (FMLs) are advanced engineering materials currently being utilized in several distinct applications, especially in aircraft and automobile manufacturing industries where an improved impact and fatigue resistance are required. Machining of FMLs is an important task in obtaining near-net shapes for joining and assembly of the components. However, the delamination occurs during conventional machining making FMLs as difficult-to-machine materials. Therefore, the present study will look into the abrasive water jet cutting (AWJC) of novel fiber intermetallic laminates (FILs) made of with alternatively stacked carbon/aramid fiber adhesively bonded with r-GO filled epoxy resin matrix and Nitinol shape memory alloy sheet embedded laminates. The AWJC experiments were performed on fabricated FILs to investigate the cut quality features including kerf taper (Kt), surface roughness (Ra) and kerf deviation (KD) by varying addition of r-GO from 0-2 wt% in the laminates, traverse speed (400-600 mm/min), waterjet pressure (200-300MPa) and nozzle height (2-4 mm), respectively. Statistical results obtained through ANOVA reveals that the traverse speed and nozzle height are the utmost significant variables which influencing the cut quality characteristics followed by waterjet pressure. Surface morphology analysis shows the wear and erosion mechanism of FILs at varying AWJC conditions. For an improved cut quality, the optimal AWJC parameters are achieved through a metaheuristic-based Barnacles Mating Optimization Algorithm (BMOA).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.