102
Views
0
CrossRef citations to date
0
Altmetric
Research Article

AWJC of NiTi interleaved r-GO embedded carbon/aramid fibre intermetallic laminates: Experimental investigations and optimization through BMOA

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1144-1158 | Received 08 Mar 2022, Accepted 22 Jul 2022, Published online: 28 Aug 2022

References

  • Eslami-Farsani, R.; Aghamohammadi, H.; Khalili, S.M.R.; Ebrahimnezhad-Khaljiri, H.; Jalali, H. Recent Trend in Developing Advanced Fiber Metal Laminates Reinforced with Nanoparticles: A Review Study. J. Ind. Text. 2020, 152808372094710. DOI: 10.1177/1528083720947106.
  • Arhore, E.G.; Yasaee, M. Lay-Up Optimisation of Fibre–metal Laminates Panels for Maximum Impact Absorption. J. Compos. Mater. 2020, 002199832093739. DOI: 10.1177/0021998320937396.
  • Mahesh, V.; Mahesh, V.; Harursampath, D. Ballistic Characterization of Fiber Elastomer Metal Laminate Composites and Effect of Positioning of Fiber Reinforced Elastomer. Proc. Inst. Mech. Eng. L. J. Mater. Des. Appl. 2021, 146442072110539. DOI: 10.1177/14644207211053963.
  • Giasin, K.; Hawxwell, J.; Sinke, J.; Dhakal, H.; Köklü, U.; Brousseau, E. The Effect of Cutting Tool Coating on the Form and Dimensional Errors of Machined Holes in GLARE® Fibre Metal Laminates. Int. J. Adv. Manuf. Technol. 2020, 107(5–6), 2817–2832. DOI: 10.1007/s00170-020-05211-2.
  • Ramraji, K.; Rajkumar, K.; Sabarinathan, P. Mechanical and Free Vibration Properties of Skin and Core Designed Basalt Woven Intertwined with Flax Layered Polymeric Laminates. Proc. Inst. Mech. Eng. Part C. 2020, 234(22), 4505–4519. DOI: 10.1177/0954406220922257.
  • Xu, J.; Zhou, L.; Chen, M.; Ren, F. Experimental Study on Mechanical Drilling of Carbon/epoxy Composite-Ti6al4v Stacks. Mater. Manuf. Process. 2019, 34(7), 715–725. DOI: 10.1080/10426914.2019.1594275.
  • Rajmohan, T. Experimental Investigation and Optimization of Machining Parameters in Drilling of Fly Ash-Filled Carbon Fiber Reinforced Composites. 2019, 37(1), 21–30. doi: 10.1080/02726351.2016.1205686
  • Rajamani, D.; Balasubramanian, E.; Dilli Babu, G.; Ananthakumar, K. Experimental Investigations on High Precision Abrasive Waterjet Cutting of Natural Fibre Reinforced Nano Clay Filled Green Composites. J. Ind. Text. 2020, 152808372094296. DOI: 10.1177/1528083720942962.
  • Bonhin, E.P.; David-Müzel, S.; De Sampaio Alves, M.C.; Botelho, E.C.; Ribeiro, M.V. A Review of Mechanical Drilling on Fiber Metal Laminates. J. Compos. Mater. 2021, 55(6), 843–869. DOI: 10.1177/0021998320957743.
  • Sorrentino, L.; Turchetta, S.; Parodo, G. Drilling of Glare Laminates: Effect of Cutting Parameters on Process Forces and Temperatures. Int. J. Adv. Manuf. Technol. 2022, 120(1–2), 645–657. DOI: 10.1007/s00170-021-08612-z.
  • Giasin, K.; Ayvar-Soberanis, S. Evaluation of Workpiece Temperature During Drilling of GLARE Fiber Metal Laminates Using Infrared Techniques: Effect of Cutting Parameters, Fiber Orientation and Spray Mist Application. Materials. 2016, 9(8), 622. DOI: 10.3390/ma9080622.
  • Kumar, D.; Gururaja, S. Abrasive Waterjet Machining of Ti/cfrp/ti Laminate and Multi-Objective Optimization of the Process Parameters Using Response Surface Methodology. J. Compos. Mater. 2020, 54(13), 1741–1759. DOI: 10.1177/0021998319884611.
  • Kumar, D.; Singh, K.K. Investigation of Delamination and Surface Quality of Machined Holes in Drilling of Multiwalled Carbon Nanotube Doped Epoxy/carbon Fiber Reinforced Polymer Nanocomposite. Proc. Inst. Mech. Eng. L J Mater. Des. Appl. 2019, 233(4), 647–663. DOI: 10.1177/1464420717692369.
  • Bañon, F.; Sambruno, A.; González-Rovira, L.; Vazquez-Martinez, J.M.; Salguero, J. A Review on the Abrasive Water-Jet Machining of Metal–carbon Fiber Hybrid Materials. Metals. 2021, 11(1), 164. DOI: 10.3390/met11010164.
  • James, S.; Panchal, S. Parametric Study of Micro Ultrasonic Machining Process of Hybrid Composite Stacks Using Finite Element Analysis. Procedia .Manuf. 2019, 34, 408–417. DOI: 10.1016/j.promfg.2019.06.185.
  • Masoud, F.; Sapuan, S.M.; Ariffin, M.K.A.M.; Nukman, Y.; Bayraktar, E. Experimental Analysis of Kerf Taper Angle in Cutting Process of Sugar Palm Fiber Reinforced Unsaturated Polyester Composites with Laser Beam and Abrasive Water Jet Cutting Technologies. Polymers. 2021, 13(15), 2543. DOI: 10.3390/polym13152543.
  • Dutta, H.; Debnath, K.; Sarma, D.K. Investigation on Cutting of Thin Carbon Fiber-Reinforced Polymer Composite Plate Using Sandwich Electrode-Assisted Wire Electrical-Discharge Machining. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2021, 235(5), 1628–1638. DOI: 10.1177/09544089211013318.
  • Dhakar, K.; Chaudhary, K.; Dvivedi, A.; Bembalge, O. An Environment-Friendly and Sustainable Machining Method: Near-Dry EDM. Mater. Manuf. Process. 2019, 34(12), 1307–1315. DOI: 10.1080/10426914.2019.1643471.
  • Inapakurthi, R. K.; Pantula, P. D.; Miriyala, S. S.; Mitra, K. Data Driven Robust Optimization of Grinding Process Under Uncertainty. Mater. Manuf. Process. 2020, 35(16), 1870–1876. DOI: 10.1080/10426914.2020.1802042.
  • Sharma, S.; Pantula, P. D.; Miriyala, S. S.; Mitra, K. A Novel Data-Driven Sampling Strategy for Optimizing Industrial Grinding Operation Under Uncertainty Using Chance Constrained Programming. Powder .Technol. 2021, 377, 913–923. DOI: 10.1016/j.powtec.2020.09.024.
  • Virivinti, N.; Hazra, B.; Mitra, K. Optimizing Grinding Operation with Correlated Uncertain Parameters. Mater. Manuf. Process. 2021, 36(6), 713–721. DOI: 10.1080/10426914.2020.1854473.
  • Inapakurthi, R. K.; Mitra, K. Optimal Surrogate Building Using SVR for an Industrial Grinding Process. Mater. Manuf. Process. 2022, 1–7. doi:10.1080/10426914.2022.2039699
  • Miriyala, S. S.; Pujari, K. N.; Naik, S.; Mitra, K. Evolutionary Neural Architecture Search for Surrogate Models to Enable Optimization of Industrial Continuous Crystallization Process. Powder .Technol. 2022, 405, 117527. DOI: 10.1016/j.powtec.2022.117527.
  • Mogilicharla, A.; Mittal, P.; Majumdar, S.; Mitra, K. Kriging Surrogate Based Multi-Objective Optimization of Bulk Vinyl Acetate Polymerization with Branching. Mater. Manuf. Process. 2015, 30(4), 394–402. DOI: 10.1080/10426914.2014.921709.
  • Jagadeesh, B.; Dinesh Babu, P.; Nalla Mohamed, M.; Marimuthu, P. Experimental Investigation and Optimization of Abrasive Water Jet Cutting Parameters for the Improvement of Cut Quality in Carbon Fiber Reinforced Plastic Laminates. J. Ind. Text. 2018, 48(1), 178–200. DOI: 10.1177/1528083717725911.
  • Doğankaya, E.; Kahya, M.; Özgür Ünver, H. Abrasive Water Jet Machining of UHMWPE and Trade-Off Optimization. Mater. Manuf. Process. 2020, 35(12), 1339–1351. DOI: 10.1080/10426914.2020.1772486.
  • Paul, S.; Hoogstrate, A.M.; Van Praag, R. Abrasive Water Jet Machining of Glass Fibre Metal Laminates. Proc. Inst. Mech. Eng. Pt. B. 2002, 216(11), 1459–1469. DOI: 10.1243/095440502320783396.
  • Pahuja, R.; Ramulu, M.; Hashish, M. Surface Quality and Kerf Width Prediction in Abrasive Water Jet Machining of Metal-Composite Stacks. Compos. B Eng. 2019, 175, 107134. DOI: 10.1016/j.compositesb.2019.107134.
  • Alberdi, A.; Artaza, T.; Suárez, A.; Rivero, A.; Girot, F. An Experimental Study on Abrasive Waterjet Cutting of Cfrp/ti6al4v Stacks for Drilling Operations. Int. J. Adv. Manuf. Technol. 2016, 86(1–4), 691–704. DOI: 10.1007/s00170-015-8192-x.
  • Pahuja, R. Abrasive Water Jet Machining of Titanium (Ti6al4v)–cfrp Stacks – a Semi-Analytical Modeling Approach in the Prediction of Kerf Geometry. J. Manuf. Processes. 2019, 39, 327–337. DOI: 10.1016/j.jmapro.2019.01.041.
  • Rajesh, M.; Rajkumar, K.; Annamalai, V.E. Abrasive Water Jet Machining on Ti Metal-Interleaved Basalt-Flax Fiber Laminate. Mater. Manuf. Process. 2021, 36(3), 329–340. DOI: 10.1080/10426914.2020.1832692.
  • Logesh, K.; Hariharasakthisudhan, P.; Rajan, B.S.; Moshi, A.A.M.; Khalkar, V. Effect of Multi‐walled Carbon Nano‐tube on Mechanical Behavior of Glass Laminate Aluminum Reinforced Epoxy Composites. Polym. Compos. 2020, 41(11), 4849–4860. DOI: 10.1002/pc.25757.
  • Wang, E.; Guo, C.; Zhou, P.; Lin, C.; Han, X.; Jiang, F. Fabrication, Mechanical Properties and Damping Capacity of Shape Memory Alloy NiTi Fiber-Reinforced Metal–intermetallic–laminate (SMAFR-MIL) Composite. Mates. Des. 2016, 95, 446–454. DOI: 10.1016/j.matdes.2016.01.130.
  • Cortés, P.; Cantwell, W.J. Fracture Properties of a Fiber-Metal Laminates Based on Magnesium Alloy. J. Mater. Sci. 2004, 39(3), 1081–1083. DOI: 10.1023/b:jmsc.0000012949.94672.77.
  • Eslami-Farsani, R.; Khazaie, M. Effect of Shape Memory Alloy Wires on High-Velocity Impact Response of Basalt Fiber Metal Laminates. J. Reinf. Plast. Compos. 2018, 37(5), 300–309. DOI: 10.1177/0731684417744054.
  • Rajamani, D.; Siva Kumar, M.; Balasubramanian, E.; Tamilarasan, A. N. Yag Laser Cutting of Hastelloy C276: Anfis Modeling and Optimization Through Woa. Mater. Manuf. Process. 2021, 36(15), 1746–1760. DOI: 10.1080/10426914.2021.1942910.
  • Sulaiman, M.H.; Mustaffa, Z.; Saari, M.M.; Daniyal, H.; Musirin, I., and Daud, M.R. Barnacles Mating Optimizer: An Evolutionary Algorithm for Solving Optimization. In: 2018 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Shah Alam, Malaysia. IEEE.
  • Yang, Z.; Liu, Q.; Zhang, L.; Dai, J.; Razmjooy, N. Model Parameter Estimation of the Pemfcs Using Improved Barnacles Mating Optimization Algorithm. Energy. 2020, 212, 118738. DOI: 10.1016/j.energy.2020.118738.
  • Azmir, M.A.; Ahsan, A.K. A Study of Abrasive Water Jet Machining Process on Glass/epoxy Composite Laminate. J. Mater. Process. Technol. 2009, 209(20), 6168–6173. DOI: 10.1016/j.jmatprotec.2009.08.011.
  • Doreswamy, D.; Shivamurthy, B.; Anjaiah, D.; Sharma, N.Y. An Investigation of Abrasive Water Jet Machining on Graphite/glass/epoxy Composite. Int. J. Manuf. Eng. 2015, 1–11. DOI: 10.1155/2015/627218.
  • Ramulu, M.; Isvilanonda, V.; Pahuja, R.; Hashish, M. Experimental Investigation of Abrasive Waterjet Machining of Titanium Graphite Laminates. Int. J. Autom. Technol. 2016, 10(3), 392–400. DOI: 10.20965/ijat.
  • Ming Ming, I.W.; Azmi, A.I.; Chuan, L.C.; Mansor, A.F. Experimental Study and Empirical Analyses of Abrasive Waterjet Machining for Hybrid Carbon/glass Fiber-Reinforced Composites for Improved Surface Quality. Int. J. Adv. Manuf. Technol. 2018, 95(9–12), 3809–3822. DOI: 10.1007/s00170-017-1465-9.
  • Unde, P.D.; Gayakwad, M.D.; Patil, N.G.; Pawade, R.S.; Thakur, D.G.; Brahmankar, P.K. Experimental Investigations into Abrasive Waterjet Machining of Carbon Fiber Reinforced Plastic. J. Compos. 2015, 1–9. DOI: 10.1155/2015/971596.
  • Naresh Babu, M.; Muthukrishnan, N. Investigation on Surface Roughness in Abrasive Water-Jet Machining by the Response Surface Method. Mater. Manuf. Process. 2014, 29(11–12), 1422–1428. DOI: 10.1080/10426914.2014.952020.
  • Tripathi, D.R.; Vachhani, K.H.; Bandhu, D.; Kumari, S.; Kumar, V.R.; Abhishek, K. Experimental Investigation and Optimization of Abrasive Waterjet Machining Parameters for GFRP Composites Using Metaphor-Less Algorithms. Mater. Manuf. Process. 2021, 36(7), 803–813. DOI: 10.1080/10426914.2020.1866193.
  • Youssef, H.A.; El-Hofy, H.A.; Abdelaziz, A.M.; El-Hofy, M.H. Accuracy and Surface Quality of Abrasive Waterjet Machined CFRP Composites. J. Compos. Mater. 2021, 55(12), 1693–1703. DOI: 10.1177/0021998320974428.
  • Jia, H.; Sun, K. Improved Barnacles Mating Optimizer Algorithm for Feature Selection and Support Vector Machine Optimization. Pattern. Anal. Appl. 2021, 24(3), 1–26. DOI: 10.1007/s10044-021-00985-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.