113
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Resistive Switching and Current Conduction Mechanisms in Amorphous LaLuO3 Thin Films Grown by Pulsed Laser Deposition

, , &
Pages 47-56 | Received 29 Sep 2013, Accepted 11 Mar 2014, Published online: 16 Jun 2014
 

Abstract

The unipolar resistive switching characteristics of the amorphous LaLuO3 thin films deposited by pulsed laser deposition have been studied. Reliable and repeatable nonvolatile switching of the resistance of LaLuO3 films was obtained between two well defined states of low and high resistance with nearly constant resistance ratio ∼107 and non-overlapping switching voltages in the range of 0.66-0.83 V and 1.9-2.7 V respectively. The temperature dependent measurement revealed metallic and semiconducting behavior in low and high resistance states respectively. The switching between low and high resistance states was attributed to the change in the separation between oxygen vacancies in light of the correlated barrier hopping theory. The current conduction mechanism of the device in high-resistance state followed the Poole's law, whereas the conduction in low-resistance state was found to be dominated by percolation. The resistance of low and high resistance states of the film showed no obvious degradation for up to ∼104 seconds indicating good retention. The achieved characteristics of the resistive switching in LaLuO3 thin films seem to be promising for futuristic nonvolatile memory applications.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 2,157.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.