329
Views
25
CrossRef citations to date
0
Altmetric
Articles

Computational classification models for predicting the interaction of drugs with P-glycoprotein and breast cancer resistance protein

, , &
Pages 939-966 | Received 10 Mar 2014, Accepted 13 Aug 2014, Published online: 01 Dec 2014
 

Abstract

P-glycoprotein (P-gp/ABCB1) and breast cancer resistance protein (BCRP/ABCG2) are two members of the adenosine triphosphate (ATP) binding cassette (ABC) family of transporters which function as membrane efflux transporters and display considerable substrate promiscuity. Both are known to significantly influence the absorption, distribution and elimination of drugs, mediate drug–drug interactions and contribute to multiple drug resistance (MDR) of cancer cells. Correspondingly, timely characterization of the interaction of novel leads and drug candidates with these two transporters is of great importance. In this study, several computational classification models for prediction of transport and inhibition of P-gp and BCRP, respectively, were developed based on newly compiled and critically evaluated experimental data. Artificial neural network (ANN) and support vector machine (SVM) ensemble based models were explored, as well as knowledge-based approaches to descriptor selection. The average overall classification accuracy of best performing models was 82% for P-gp transport, 88% for BCRP transport, 89% for P-gp inhibition and 87% for BCRP inhibition, determined across an array of different test sets. An analysis of substrate overlap between P-gp and BCRP was also performed. The accuracy, simplicity and interpretability of the proposed models suggest that they could be of significant utility in the drug discovery and development settings.

Acknowledgements

The authors gratefully acknowledge Simulations Plus, Inc. for making ADMET Predictor available under the terms of a Non-profit License Agreement and for contributing insightful suggestions. This work was financially supported by the Ministry of Education and Science of Republic of Serbia (Grant No. 172,009).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 543.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.