329
Views
25
CrossRef citations to date
0
Altmetric
Articles

Computational classification models for predicting the interaction of drugs with P-glycoprotein and breast cancer resistance protein

, , &
Pages 939-966 | Received 10 Mar 2014, Accepted 13 Aug 2014, Published online: 01 Dec 2014

References

  • A.H. Schinkel and J.W. Jonker, Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: An overview, Adv. Drug Deliv. Rev. 55 (2003), pp. 3–29.10.1016/S0169-409X(02)00169-2
  • F.J. Sharom, The P-glycoprotein multidrug transporter, Essays Biochem. 50 (2011), pp. 161–178.10.1042/bse0500161
  • Z. Ni, Z. Bikadi, M.F. Rosenberg, and Q. Mao, Structure and function of the human breast cancer resistance protein (BCRP/ABCG2), Curr. Drug Metab. 11 (2010), pp. 603–617.10.2174/138920010792927325
  • A. Tamaki, C. Ierano, G. Szakacs, R.W. Robey, and S.E. Bates, The controversial role of ABC transporters in clinical oncology, Essays Biochem. 50 (2011), pp. 209–232.10.1042/bse0500209
  • K. Natarajan, Y. Xie, M.R. Baer, and D.D. Ross, Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance, Biochem. Pharmacol. 83 (2012), pp. 1084–1103.10.1016/j.bcp.2012.01.002
  • G. Szakács, A. Váradi, C. Özvegy-Laczka, and B. Sarkadi, The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox), Drug Discov. Today 13 (2008), pp. 379–393.10.1016/j.drudis.2007.12.010
  • S. Agarwal, A.M.S. Hartz, W.F. Elmquist, and B. Bauer, Breast cancer resistance protein and P-glycoprotein in brain cancer: Two gatekeepers team up, Curr. Pharm. Des. 17 (2011), pp. 2793–2802.10.2174/138161211797440186
  • J.S. Lagas, R.A.B. van Waterschoot, R.W. Sparidans, E. Wagenaar, J.H. Beijnen, and A.H. Schinkel, Breast cancer resistance protein and P-glycoprotein limit sorafenib brain accumulation, Mol. Cancer Ther. 9 (2010), pp. 319–326.10.1158/1535-7163.MCT-09-0663
  • S.C. Tang, N.A.G. Lankheet, B. Poller, E. Wagenaar, J.H. Beijnen, and A.H. Schinkel, P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) restrict brain accumulation of the active sunitinib metabolite n-desethyl sunitinib, J. Pharmacol. Exp. Ther. 341 (2012), pp. 164–173.10.1124/jpet.111.186908
  • J.W. Polli, K.L. Olson, J.P. Chism, L.S. John-Williams, R.L. Yeager, S.M. Woodard, V. Otto, S. Castellino, and V.E. Demby, An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine; GW572016), Drug Metab. Dispos. Biol. Fate Chem. 37 (2009), pp. 439–442.10.1124/dmd.108.024646
  • H. Kodaira, H. Kusuhara, J. Ushiki, E. Fuse, and Y. Sugiyama, Kinetic analysis of the cooperation of P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp/Abcg2) in limiting the brain and testis penetration of erlotinib, flavopiridol, and mitoxantrone, J. Pharmacol. Exp. Ther. 333 (2010), pp. 788–796.10.1124/jpet.109.162321
  • L. Zhang, Y.D. Zhang, J.M. Strong, K.S. Reynolds, and S.-M. Huang, A regulatory viewpoint on transporter-based drug interactions, Xenobiotica 38 (2008), pp. 709–724.10.1080/00498250802017715
  • K.M. Giacomini, S.M. Huang, D.J. Tweedie, L.Z. Benet, K.L. Brouwer, X. Chu, A. Dahlin, R. Evers, V. Fischer, K.M. Hillgren, K.A. Hoffmaster, T. Ishikawa, D. Keppler, R.B. Kim, C.A. Lee, M. Niemi, J.W. Polli, Y. Sugiyama, P.W. Swaan, J.A. Ware, S.H. Wright, S.W. Yee, M.J. Zamek-Gliszczynski, and L. Zhang. Membrane transporters in drug development, Nat. Rev. Drug Discov. 9 (2010), pp. 215–236.
  • B. Sarkadi, L. Homolya, G. Szakács, and A. Váradi, Human multidrug resistance ABCB and ABCG transporters: Participation in a chemoimmunity defense system, Physiol. Rev. 86 (2006), pp. 1179–1236.10.1152/physrev.00037.2005
  • D. Epel, T. Luckenbach, C.N. Stevenson, L.A. MacManus-Spencer, A. Hamdoun, and T. Smital, Efflux transporters: Newly appreciated roles in protection against pollutants, Environ. Sci. Technol. 42 (2008), pp. 3914–3920.10.1021/es087187v
  • K. Sreeramulu, R. Liu, and F.J. Sharom, Interaction of insecticides with mammalian P-glycoprotein and their effect on its transport function, Biochim. Biophys. Acta 1768 (2007), pp. 1750–1757.10.1016/j.bbamem.2007.04.001
  • T. Luckenbach and D. Epel, Nitromusk and polycyclic musk compounds as long-term inhibitors of cellular xenobiotic defense systems mediated by multidrug transporters, Environ. Health Perspect. 113 (2005), pp. 17–24.
  • K.M. Bircsak, J.R. Richardson, and L.M. Aleksunes, Inhibition of human MDR1 and BCRP transporter ATPase activity by organochlorine and pyrethroid insecticides, J. Biochem. Mol. Toxicol. 27 (2013), pp. 157–164.10.1002/jbt.21458
  • F. Dutheil, P. Beaune, C. Tzourio, M. Loriot, and A. Elbaz, Interaction between ABCB1 and professional exposure to organochlorine insecticides in Parkinson disease, Arch. Neurol. 67 (2010), pp. 739–745.
  • L. Chen, Y. Li, Q. Zhao, H. Peng, and T. Hou, ADME evaluation in drug discovery. 10. Predictions of P-glycoprotein inhibitors using recursive partitioning and naïve Bayesian classification techniques, Mol. Pharm. 8 (2011), pp. 889–900.10.1021/mp100465q
  • P. de Cerqueira Lima, A. Golbraikh, S. Oloff, Y. Xiao, and A. Tropsha, Combinatorial QSAR modeling of P-glycoprotein substrates, J. Chem. Inf. Model. 46 (2006), pp. 1245–1254.10.1021/ci0504317
  • P. Crivori, B. Reinach, D. Pezzetta, and I. Poggesi, computational models for identifying potential P-glycoprotein substrates and inhibitors, Mol. Pharm. 3 (2006), pp. 33–44.10.1021/mp050071a
  • J. Huang, G. Ma, I. Muhammad, and Y. Cheng, Identifying P-glycoprotein substrates using a support vector machine optimized by a particle swarm, J. Chem. Inf. Model. 47 (2007), pp. 1638–1647.10.1021/ci700083n
  • Z. Wang, Y. Chen, H. Liang, A. Bender, R.C. Glen, and A. Yan, P-glycoprotein substrate models using support vector machines based on a comprehensive data set, J. Chem. Inf. Model. 51 (2011), pp. 1447–1456.10.1021/ci2001583
  • V.K. Gombar, J.W. Polli, J.E. Humphreys, S.A. Wring, and C.S. Serabjit-Singh, Predicting P-glycoprotein substrates by a quantitative structure–activity relationship model, J. Pharm. Sci. 93 (2004), pp. 957–968.10.1002/(ISSN)1520-6017
  • Y. Xue, C.W. Yap, L.Z. Sun, Z.W. Cao, J.F. Wang, and Y.Z. Chen, Prediction of P-glycoprotein substrates by a support vector machine approach, J. Chem. Inf. Comput. Sci. 44 (2004), pp. 1497–1505.10.1021/ci049971e
  • Z. Bikadi, I. Hazai, D. Malik, K. Jemnitz, Z. Veres, P. Hari, Z. Ni, T.W. Loo, D.M. Clarke, E. Hazai, and Q. Mao, Predicting P-glycoprotein-mediated drug transport based on support vector machine and three-dimensional crystal structure of P-glycoprotein, PLoS One 6 (2011), p. e25815.10.1371/journal.pone.0025815
  • R. Schwaha and G.F. Ecker, Similarity based descriptors – Useful for classification of substrates of the human multidrug transporter P-glycoprotein?, QSAR Comb. Sci. 28 (2009), pp. 834–839.10.1002/qsar.v28:8
  • F. Broccatelli, E. Carosati, A. Neri, M. Frosini, L. Goracci, T.I. Oprea, and G. Cruciani, A novel approach for predicting P-glycoprotein (ABCB1) inhibition using molecular interaction fields, J. Med. Chem. 54 (2011), pp. 1740–1751.10.1021/jm101421d
  • T. Ishikawa, H. Saito, H. Hirano, Y. Inoue, and Y. Ikegami, Human ABC transporter ABCG2 in cancer chemotherapy: Drug molecular design to circumvent multidrug resistance, in Bioinformatics and Drug Discovery, R.S. Larson, ed., Humana Press, Totowa, NJ, 2012, pp. 267–278.10.1007/978-1-61779-965-5
  • L. Zhong, C.-Y. Ma, H. Zhang, L.-J. Yang, H.-L. Wan, Q.-Q. Xie, L.L. Li, and S.-Y. Yang, A prediction model of substrates and non-substrates of breast cancer resistance protein (BCRP), pp. developed by GA–CG–SVM method, Comput. Biol. Med. 41 (2011), pp. 1006–1013.10.1016/j.compbiomed.2011.08.009
  • H. Saito, H. Hirano, and T. Ishikawa, High-speed screening and quantitative SAR analysis of human ABC transporter ABCG2 for molecular modeling of anticancer drugs to circumvent multidrug resistance, Mini Rev. Med. Chem. 7 (2007), pp. 1009–1018.10.2174/138955707782110169
  • M.A. Demel, O. Krämer, P. Ettmayer, E.E.J. Haaksma, and G.F. Ecker, Predicting ligand interactions with ABC transporters in ADME, Chem. Biodivers. 6 (2009), pp. 1960–1969.10.1002/cbdv.v6:11
  • L. Chen, Y. Li, H. Yu, L. Zhang, and T. Hou, Computational models for predicting substrates or inhibitors of P-glycoprotein, Drug Discov. Today. 17 (2012), pp. 343–351.10.1016/j.drudis.2011.11.003
  • S.G. Aller, J. Yu, A. Ward, Y. Weng, S. Chittaboina, R. Zhuo, P.M. Harrell, Y.T. Trinh, Q. Zhang, I.L. Urbatsch, and G. Chang, Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding, Science 323 (2009), pp. 1718–1722.10.1126/science.1168750
  • F. Klepsch and G.F. Ecker, Impact of the recent mouse P-glycoprotein structure for structure-based ligand design, Mol. Inform. 29 (2010), pp. 276–286.10.1002/minf.201000017
  • G.F. Ecker, T. Stockner, and P. Chiba, Computational models for prediction of interactions with ABC-transporters, Drug Discov. Today. 13 (2008), pp. 311–317.10.1016/j.drudis.2007.12.012
  • J.E. Penzotti, M.L. Lamb, E. Evensen, and P.D.J. Grootenhuis, A computational ensemble pharmacophore model for identifying substrates of P-glycoprotein, J. Med. Chem. 45 (2002), pp. 1737–1740.10.1021/jm0255062
  • W.-X. Li, L. Li, J. Eksterowicz, X.B. Ling, and M. Cardozo, Significance analysis and multiple pharmacophore models for differentiating P-glycoprotein substrates, J. Chem. Inf. Model. 47 (2007), pp. 2429–2438.10.1021/ci700284p
  • M.E. Gantner, M.E. Di Ianni, M. Ruiz, A. Esperanza, A. Talevi, and L.E. Bruno-Blanch, Development of conformation independent computational models for the early recognition of breast cancer resistance protein substrates, BioMed Res. Int. 2013 (2013), p. e863592.
  • R. Didziapetris, P. Japertas, A. Avdeef, and A. Petrauskas, Classification analysis of P-glycoprotein substrate specificity, J. Drug Target. 11 (2003), pp. 391–406.10.1080/10611860310001648248
  • Y. Zhang, C. Bachmeier, and D.W. Miller, In vitro and in vivo models for assessing drug efflux transporter activity, Adv. Drug Deliv. Rev. 55 (2003), pp. 31–51.10.1016/S0169-409X(02)00170-9
  • J.W. Polli, S.A. Wring, J.E. Humphreys, L. Huang, J.B. Morgan, L.O. Webster, and C.S. Serabjit-Singh, Rational use of in vitro P-glycoprotein assays in drug discovery, J. Pharmacol. Exp. Ther. 299 (2001), pp. 620–628.
  • C. Hegedűs, G. Szakács, L. Homolya, T.I. Orbán, Á. Telbisz, M. Jani, and B. Sarkadi, Ins and outs of the ABCG2 multidrug transporter: An update on in vitro functional assays, Adv. Drug Deliv. Rev. 61 (2009), pp. 47–56.10.1016/j.addr.2008.09.007
  • C. Knox, V. Law, T. Jewison, P. Liu, S. Ly, A. Frolkis, A. Pon, K. Banco, C. Mak, V. Neveu, Y. Djoumbou, R. Eisner, A.C. Guo, and D.S. Wishart, DrugBank 3.0: A comprehensive resource for ‘omics’ research on drugs, Nucleic Acids Res. 39 (2011), pp. D1035–1041.10.1093/nar/gkq1126
  • J. Larsson, J. Gottfries, S. Muresan, and A. Backlund, ChemGPS-NP: Tuned for navigation in biologically relevant chemical space, J. Nat. Prod. 70 (2007), pp. 789–794.10.1021/np070002y
  • T. Williams and C. Kelley, Gnuplot 4.6: An interactive plotting program, 2012. http://www.gnuplot.info/
  • Spartan ‘02 for Linux, Wavefunction Inc., Irvine, CA, USA, 2002. http://www.wavefun.com/products/spartan.html
  • MarvinSketch 5.10.1, ChemAxon, 2012. http://www.chemaxon.com/products/marvin/marvinsketch/
  • ADMET PredictorTM 5.5, Simulations Plus, Inc., Lancaster, CA, USA, 2011. http://www.simulations-plus.com/
  • P. Matsson, G. Englund, G. Ahlin, C.A.S. Bergström, U. Norinder, and P. Artursson, A global drug inhibition pattern for the human ATP-binding cassette transporter breast cancer resistance orotein (ABCG2), J. Pharmacol. Exp. Ther. 323 (2007), pp. 19–30.10.1124/jpet.107.124768
  • E. Furusjö, A. Svenson, M. Rahmberg, and M. Andersson, The importance of outlier detection and training set selection for reliable environmental QSAR predictions, Chemosphere 63 (2006), pp. 99–108.10.1016/j.chemosphere.2005.07.002
  • T. Kohonen, Self-Organizing Maps, 3rd ed., Springer Verlag, Berlin, Heidelberg and New York, 2001.10.1007/978-3-642-56927-2
  • S.P. Lloyd, Least squares quantization in PCM, IEEE Trans. Inf. Theory 28 (1982), pp. 129–137.10.1109/TIT.1982.1056489
  • ADMET PredictorTM User Manual, 2011. Simulations Plus, Inc. Lancaster, CA, USA.
  • S. Koshiba, R. An, H. Saito, K. Wakabayashi, A. Tamura, and T. Ishikawa, Human ABC transporters ABCG2 (BCRP) and ABCG4, Xenobiotica 38 (2008), pp. 863–888.10.1080/00498250801986944
  • S.-F. Zhou, Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition, Xenobiotica 38 (2008), pp. 802–832.10.1080/00498250701867889
  • T.R. Stouch and O. Gudmundsson, Progress in understanding the structure-activity relationships of P-glycoprotein, Adv. Drug Deliv. Rev. 54 (2002), pp. 315–328.10.1016/S0169-409X(02)00006-6
  • W.J. Youden, Index for rating diagnostic tests, Cancer 3 (1950), pp. 32–35.10.1002/(ISSN)1097-0142
  • C.-C. Changand C.-J. Lin, LIBSVM: A library for support vector machines, ACM Trans Intell Syst Technol. 2 (2011), pp. 27:1–27:27.
  • J.L. Durant, B.A. Leland, D.R. Henry, and J.G. Nourse, Reoptimization of MDL keys for use in drug discovery, J. Chem. Inf. Comput. Sci. 42 (2002), pp. 1273–1280.10.1021/ci010132r
  • RDKit: Open-source cheminformatics, version 2013.09, 2013.
  • J. Levatić, J. Ćurak, M. Kralj, T. Šmuc, M. Osmak, and F. Supek, Accurate Models for P-gp drug recognition induced from a cancer cell line cytotoxicity screen, J. Med. Chem. 56 (2013), pp. 5691–5708.10.1021/jm400328s
  • Y. Pan, P.P. Chothe, and P.W. Swaan, Identification of novel breast cancer resistance protein (BCRP) inhibitors by virtual screening, Mol. Pharm. 10 (2013), pp. 1236–1248.10.1021/mp300547h
  • H. Sun, A naïve Bayes classifier for prediction of multidrug resistance reversal activity on the basis of atom typing, J. Med. Chem. 48 (2005), pp. 4031–4039.10.1021/jm050180t
  • M. Hennessy and J.P. Spiers, A primer on the mechanics of P-glycoprotein the multidrug transporter, Pharmacol. Res. 55 (2007), pp. 1–15.10.1016/j.phrs.2006.10.007
  • F.J. Sharom, ABC multidrug transporters: Structure, function and role in chemoresistance, Pharmacogenomics 9 (2008), pp. 105–127.10.2217/14622416.9.1.105
  • D.A.P. Gutmann, A. Ward, I.L. Urbatsch, G. Chang, and H.W. van Veen, Understanding polyspecificity of multidrug ABC transporters: Closing in on the gaps in ABCB1, Trends Biochem. Sci. 35 (2010), pp. 36–42.10.1016/j.tibs.2009.07.009
  • K.P. Locher, Structure and mechanism of ATP-binding cassette transporters, Philos. Trans. R. Soc. B Biol. Sci. 364 (2009), pp. 239–245.10.1098/rstb.2008.0125
  • E. Gatlik-Landwojtowicz, P. Äänismaa, and A. Seelig, Quantification and characterization of P-glycoprotein–substrate interactions, Biochemistry 45 (2006), pp. 3020–3032.10.1021/bi051380+
  • F. Frézard, E. Pereira-Maia, P. Quidu, W. Priebe, and A. Garnier-Suillerot, P-Glycoprotein preferentially effluxes anthracyclines containing free basic versus charged amine, Eur. J. Biochem. 268 (2001), pp. 1561–1567.
  • A. Seelig, A general pattern for substrate recognition by P-glycoprotein, Eur. J. Biochem. 251 (1998), pp. 252–261.10.1046/j.1432-1327.1998.2510252.x
  • D.C. Rees, E. Johnson, and O. Lewinson, ABC transporters: The power to change, Nat. Rev. Mol. Cell Biol. 10 (2009), pp. 218–227.10.1038/nrm2646
  • C. Lemos, G. Jansen, and G.J. Peters, Drug transporters: Recent advances concerning BCRP and tyrosine kinase inhibitors, Br. J. Cancer. 98 (2008), pp. 857–862.10.1038/sj.bjc.6604213
  • P. Matsson, J. Pedersen, U. Norinder, C. Bergström, and P. Artursson, Identification of novel specific and general inhibitors of the three major human ATP-binding cassette transporters P-gp, BCRP and MRP2 among registered drugs, Pharm. Res. 26 (2009), pp. 1816–1831.10.1007/s11095-009-9896-0
  • Y. Wei, Y. Ma, Q. Zhao, Z. Ren, Y. Li, T. Hou, and H. Peng, New use for an old drug: Inhibiting ABCG2 with sorafenib, Mol. Cancer Ther. 11 (2012), pp. 1693–1702.10.1158/1535-7163.MCT-12-0215
  • F. Broccatelli, QSAR models for P-glycoprotein transport based on a highly consistent data set, J. Chem. Inf. Model. 52 (2012), pp. 2462–2470.10.1021/ci3002809
  • T.I. Netzeva and A. Gallegos, Saliner, and A.P. Worth, Comparison of the applicability domain of a quantitative structure–activity relationship for estrogenicity with a large chemical inventory, Environ. Toxicol. Chem. 25 (2006), pp. 1223–1230.10.1897/05-367R.1
  • J. Jaworska, N. Nikolova-Jeliazkova, and T. Aldenberg, QSAR applicability domain estimation by projection of the training set in descriptor space: A review, Altern. Lab. Anim. 33 (2005), pp. 445–459.
  • R.P. Sheridan, B.P. Feuston, V.N. Maiorov, and S.K. Kearsley, Similarity to molecules in the training set is a good discriminator for prediction accuracy in QSAR, J. Chem. Inf. Comput. Sci. 44 (2004), pp. 1912–1928.10.1021/ci049782w
  • F. Sahigara, K. Mansouri, D. Ballabio, A. Mauri, V. Consonni, and R. Todeschini, Comparison of different approaches to define the applicability domain of QSAR models, Molecules. 17 (2012), pp. 4791–4810.10.3390/molecules17054791
  • Y.A. Gandhi and M.E. Morris, Structure–activity relationships and quantitative structure–activity relationships for breast cancer resistance protein (ABCG2), AAPS J. 11 (2009), pp. 541–552.10.1208/s12248-009-9132-1
  • M.A. Demel, O. Kraemer, P. Ettmayer, E. Haaksma, and G.F. Ecker, Ensemble rule-based classification of substrates of the human ABC-transporter ABCB1 using simple physicochemical descriptors, Mol. Inform. 29 (2010), pp. 233–242.10.1002/minf.v29:3
  • E. Hazai, I. Hazai, I. Ragueneau-Majlessi, S.P. Chung, Z. Bikadi, and Q. Mao, Predicting substrates of the human breast cancer resistance protein using a support vector machine method, BMC Bioinf. 14 (2013), p. 130.10.1186/1471-2105-14-130
  • R. Fraczkiewicz, D. Zhuang, J. Zhang, D. Miller, and W. Woltosz, Busting the black box myth: Designing out unwanted ADMET properties with machine learning approaches, CICSJ Bull. 27 (2009), pp. 96–102.
  • S. Erić, M. Kalinić, A. Popović, M. Zloh, and I. Kuzmanovski, Prediction of aqueous solubility of drug-like molecules using a novel algorithm for automatic adjustment of relative importance of descriptors implemented in counter-propagation artificial neural networks, Int. J. Pharm. 437 (2012), pp. 232–241.
  • R.J. Vaz and T. Klabunde (eds.), Antitargets: Prediction and Prevention of Drug Side Effects, Wiley-VCH, Weinheim, Germany, 2008.
  • T.J. Raub, P-glycoprotein recognition of substrates and circumvention through rational drug design, Mol. Pharm. 3 (2006), pp. 3–25.10.1021/mp0500871

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.