202
Views
5
CrossRef citations to date
0
Altmetric
Articles

A novel proteochemometrics model for predicting the inhibition of nine carbonic anhydrase isoforms based on supervised Laplacian score and k-nearest neighbour regression

, , ORCID Icon &
Pages 419-437 | Received 19 Dec 2017, Accepted 28 Feb 2018, Published online: 08 Jun 2018
 

Abstract

Carbonic anhydrases (CAs) are essential enzymes in biological processes. Prediction of the activity of compounds towards CA isoforms could be evaluated by computational techniques to discover a novel therapeutic inhibitor. Studies such as quantitative structure–activity relationships (QSARs), molecular docking and pharmacophore modelling have been carried out to design potent inhibitors. Unfortunately, QSAR does not consider the information of target space in the model. We successfully developed an in silico proteochemometrics model that simultaneously uses target and ligand descriptors to predict the activities of CA inhibitors. Herein, a strong predictive model was built for the prediction of protein–ligand binding affinity between nine human CA isoforms and 549 ligands. We applied descriptors obtained from the PROFEAT webserver for the proteins. Ligands were encoded by descriptors from PaDEL-Descriptor software. Supervised Laplacian score (SLS) and particle swarm optimization were used for feature selection. Models were derived using k-nearest neighbour (KNN) regression and a kernel smoother model. The predictive ability of the models was evaluated by an external validation test. Statistical results (Q2ext = 0.7806, r2test = 0.7811 and RMSEtest = 0.5549) showed that the model generated using SLS and KNN regression outperformed the other models. Consequently, the selectivity of compounds towards these enzymes will be predicted prior to synthesis.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 543.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.