202
Views
5
CrossRef citations to date
0
Altmetric
Articles

A novel proteochemometrics model for predicting the inhibition of nine carbonic anhydrase isoforms based on supervised Laplacian score and k-nearest neighbour regression

, , ORCID Icon &
Pages 419-437 | Received 19 Dec 2017, Accepted 28 Feb 2018, Published online: 08 Jun 2018

References

  • C.T. Supuran, Carbonic anhydrase inhibition/activation: Trip of a scientist around the world in the search of novel chemotypes and drug targets, Curr. Pharm. Des. 16 (2010), pp. 3233–3245.
  • F. Erdemir, D.B. Celepci, A. Aktaş, P. Taslimi, Y. Gök, H. Karabıyık, and İ. Gülçin, 2-Hydroxyethyl substituted NHC precursors: Synthesis, characterization, crystal structure and carbonic anhydrase, α-glycosidase, butyrylcholinesterase, and acetylcholinesterase inhibitory properties, J. Mol. Struct. 1155 (2018), pp. 797–806.
  • Y. Sarı, A. Aktaş, P. Taslimi, Y. Gök, and İ. Gulçin, Novel N‐propylphthalimide‐and 4‐vinylbenzyl‐substituted benzimidazole salts: Synthesis, characterization, and determination of their metal chelating effects and inhibition profiles against acetylcholinesterase and carbonic anhydrase enzymes, J. Biochem. Mol. Toxicol. 32 (2018), pp. e22009. Available at http://onlinelibrary.wiley.com/doi/10.1002/jbt.22009/full.
  • C.T. Supuran, Carbonic anhydrase inhibitors and activators for novel therapeutic applications, Future Med. Chem. 3 (2011), pp. 1165–1180.
  • R. Perfetto, S. Del Prete, D. Vullo, G. Sansone, C. Barone, M. Rossi, C.T. Supuran, and C. Capasso, Sequence analysis, kinetic constants, and anion inhibition profile of the nacrein-like protein (CgiNAP2X1) from the Pacific oyster Magallana gigas (Ex-Crassostrea gigas), Mar. Drugs 15 (2017), pp. 270–284.
  • S. Yılmaz, Y. Akbaba, B. Özgeriş, L.P. Köse, S. Göksu, İ. Gülçin, S.H. Alwasel, and C.T. Supuran, Synthesis and inhibitory properties of some carbamates on carbonic anhydrase and acetylcholine esterase, J. Enzyme Inhib. Med. Chem. 31 (2016), pp. 1484–1491.
  • M. Bozdag, M. Pinard, F. Carta, E. Masini, A. Scozzafava, R. McKenna, and C.T. Supuran, A class of 4-sulfamoylphenyl-ω-aminoalkyl ethers with effective carbonic anhydrase inhibitory action and antiglaucoma effects, J. Med. Chem. 57 (2014), pp. 9673–9686.
  • N. Lounnas, C. Rosilio, M. Nebout, D. Mary, E. Griessinger, Z. Neffati, J. Chiche, H. Spits, T.J. Hagenbeek, and V. Asnafi, Pharmacological inhibition of carbonic anhydrase XII interferes with cell proliferation and induces cell apoptosis in T-cell lymphomas, Cancer Lett. 333 (2013), pp. 76–88.
  • M. Ceruso, S. Antel, A. Scozzafava, and C.T. Supuran, Synthesis and inhibition potency of novel ureido benzenesulfonamides incorporating GABA as tumor-associated carbonic anhydrase IX and XII inhibitors, J. Enzyme Inhib. Med. Chem. 31 (2016), pp. 205–211.
  • Y. Budak, U.M. Kocyigit, M.B. Gürdere, K. Özcan, P. Taslimi, İ. Gülçin, and M. Ceylan, Synthesis and investigation of antibacterial activities and carbonic anhydrase and acetyl cholinesterase inhibition profiles of novel 4, 5-dihydropyrazol and pyrazolyl-thiazole derivatives containing methanoisoindol-1, 3-dion unit, Synth. Commun. 47 (2017), pp. 2313–2323.
  • U.M. Kocyigit, Y. Budak, F. Eligüzel, P. Taslimi, D. Kılıç, İ. Gulçin, and M. Ceylan, Synthesis and carbonic anhydrase inhibition of tetrabromo chalcone derivatives, Arch. Pharm. (Weinheim) 350 (2017), PP. 1700198. Available at http://onlinelibrary.wiley.com/doi/10.1002/ardp.201700198/abstract.
  • E. Nazarshodeh and S. Gharaghani, Toward a hierarchical virtual screening and toxicity risk analysis for identifying novel CA XII inhibitors, Biosystems 162 (2017), pp. 35–43.
  • R. Sheikhpour, M.A. Sarram, M. Rezaeian, and E. Sheikhpour, QSAR modelling using combined simple competitive learning networks and RBF neural networks, SAR QSAR Environ. Res. 29 (2018), pp. 257–276.
  • E. Nazarshodeh, F. Shiri, and J.B. Ghasemi, 3D-QSAR and virtual screening studies in identification of new Rho kinase inhibitors with different scaffolds, J. Iran. Chem. Soc. 12 (2015), pp. 1945–1959.
  • J.B. Ghasemi, E. Nazarshodeh, and H. Abedi, Molecular docking, 2D and 3D-QSAR studies of new indole-based derivatives as HCV-NS5B polymerase inhibitors, J. Iran. Chem. Soc. 12 (2015), pp. 1789–1799.
  • R. Sheikhpour, M.A. Sarram, S. Gharaghani, and M.A.Z. Chahooki, Feature selection based on graph Laplacian by using compounds with known and unknown activities, J. Chemom. 31 (2017), pp. e2899. Available at http://onlinelibrary.wiley.com/doi/10.1002/cem.2899/abstract.
  • G.J.P. van Westen, J.K. Wegner, A.P. IJzerman, H.W.T. van Vlijmen, and A. Bender, Proteochemometric modeling as a tool to design selective compounds and for extrapolating to novel targets, Medchemcomm 2 (2011), pp. 16–30.
  • I. Cortés-Ciriano, Q.U. Ain, V. Subramanian, E.B. Lenselink, O. Méndez-Lucio, A.P. IJzerman, G. Wohlfahrt, P. Prusis, T.E. Malliavin, and G.J.P. van Westen, Polypharmacology modelling using proteochemometrics (PCM): Recent methodological developments, applications to target families, and future prospects, Medchemcomm 6 (2015), pp. 24–50.
  • A. Kontijevskis, J.E.S. Wikberg, and J. Komorowski, Computational proteomics analysis of HIV-1 protease interactome, Proteins Struct. Funct. Bioinforma. 68 (2007), pp. 305–312.
  • H. Strömbergsson, A. Kryshtafovych, P. Prusis, K. Fidelis, J.E.S. Wikberg, J. Komorowski, and T.R. Hvidsten, Generalized modeling of enzyme–ligand interactions using proteochemometrics and local protein substructures, Proteins Struct. Funct. Bioinforma. 65 (2006), pp. 568–579.
  • H. Strömbergsson, P. Prusis, H. Midelfart, M. Lapinsh, J.E.S. Wikberg, and J. Komorowski, Rough set-based proteochemometrics modeling of G-protein-coupled receptor-ligand interactions, Proteins Struct. Funct. Bioinforma. 63 (2006), pp. 24–34.
  • B. Rasti, M.H. Karimi-Jafari, and J.B. Ghasemi, Quantitative characterization of the interaction space of the mammalian carbonic anhydrase isoforms I, II, VII, IX, XII, and XIV and their Inhibitors, using the proteochemometric approach, Chem. Biol. Drug Des. 88 (2016), pp. 341–353.
  • B. Rasti, M. Namazi, M.H. Karimi‐Jafari, and J.B. Ghasemi, Proteochemometric modeling of the interaction space of carbonic anhydrase and its inhibitors: An assessment of structure‐based and sequence‐based descriptors, Mol. Inform. 36 (2016), pp. 1600102. Available at http://onlinelibrary.wiley.com/doi/10.1002/minf.201600102/abstract.
  • C.W. Yap, PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints, J. Comput. Chem. 32 (2011), pp. 1466–1474.
  • M. Bozdag, A.M. Alafeefy, D. Vullo, F. Carta, N. Dedeoglu, A.-M.S. Al-Tamimi, N.A. Al-Jaber, A. Scozzafava, and C.T. Supuran, Benzenesulfonamides incorporating bulky aromatic/heterocyclic tails with potent carbonic anhydrase inhibitory activity, Bioorg. Med. Chem. 23 (2015), pp. 7751–7764.
  • S. Carradori, D. Secci, C. De Monte, A. Mollica, M. Ceruso, A. Akdemir, A.P. Sobolev, R. Codispoti, F. De Cosmi, and P. Guglielmi, A novel library of saccharin and acesulfame derivatives as potent and selective inhibitors of carbonic anhydrase IX and XII isoforms, Bioorg. Med. Chem. 24 (2016), pp. 1095–1105.
  • M. Durgun, H. Turkmen, M. Ceruso, and C.T. Supuran, Synthesis of 4-sulfamoylphenyl-benzylamine derivatives with inhibitory activity against human carbonic anhydrase isoforms I, II, IX and XII, Bioorg. Med. Chem. 24 (2016), pp. 982–988.
  • W.M. Eldehna, M. Fares, M. Ceruso, H.A. Ghabbour, S.M. Abou-Seri, H.A. Abdel-Aziz, D.A.A. El Ella, and C.T. Supuran, Amido/ureidosubstituted benzenesulfonamides-isatin conjugates as low nanomolar/subnanomolar inhibitors of the tumor-associated carbonic anhydrase isoform XII, Eur. J. Med. Chem. 110 (2016), pp. 259–266.
  • C.L. Lomelino, B.P. Mahon, R. McKenna, F. Carta, and C.T. Supuran, Kinetic and X-ray crystallographic investigations on carbonic anhydrase isoforms I, II, IX and XII of a thioureido analog of SLC-0111, Bioorg. Med. Chem. 24 (2016), pp. 976–981.
  • A. Nocentini, M. Ceruso, F. Carta, and C.T. Supuran, 7-Aryl-triazolyl-substituted sulfocoumarins are potent, selective inhibitors of the tumor-associated carbonic anhydrase IX and XII, J. Enzyme Inhib. Med. Chem. 31 (2015), pp. 1–8.
  • A. Petrou, A. Geronikaki, E. Terzi, O.O. Guler, T. Tuccinardi, and C.T. Supuran, Inhibition of carbonic anhydrase isoforms I, II, IX and XII with secondary sulfonamides incorporating benzothiazole scaffolds, J. Enzyme Inhib. Med. Chem. 31 (2016), pp. 1–6.
  • A.M. Alafeefy, F. Carta, M. Ceruso, A.-M.S. Al-Tamimi, A.A. Al-Kahtani, and C.T. Supuran, Development of 3-(4-aminosulphonyl)-phenyl-2-mercapto-3H-quinazolin-4-ones as inhibitors of carbonic anhydrase isoforms involved in tumorigenesis and glaucoma, Bioorg. Med. Chem. 24 (2016), pp. 1402–1407.
  • E. Barresi, S. Salerno, A.M. Marini, S. Taliani, C. La Motta, F. Simorini, F. Da Settimo, D. Vullo, and C.T. Supuran, Sulfonamides incorporating heteropolycyclic scaffolds show potent inhibitory action against carbonic anhydrase isoforms I, II, IX and XII, Bioorg. Med. Chem. 24 (2016), pp. 921–927.
  • P. Khloya, M. Ceruso, S. Ram, C.T. Supuran, and P.K. Sharma, Sulfonamide bearing pyrazolylpyrazolines as potent inhibitors of carbonic anhydrase isoforms I, II, IX and XII, Bioorg. Med. Chem. Lett. 25 (2015), pp. 3208–3212.
  • R. Meleddu, E. Maccioni, S. Distinto, G. Bianco, C. Melis, S. Alcaro, F. Cottiglia, M. Ceruso, and C.T. Supuran, New 4-[(3-cyclohexyl-4-aryl-2, 3-dihydro-1, 3-thiazol-2-ylidene) amino] benzene-1-sulfonamides, synthesis and inhibitory activity toward carbonic anhydrase I, II, IX, XII, Bioorg. Med. Chem. Lett. 25 (2015), pp. 3281–3284.
  • F.M. Awadallah, T.A. El-Waei, M.M. Hanna, S.E. Abbas, M. Ceruso, B.E. Oz, O.O. Guler, and C.T. Supuran, Synthesis, carbonic anhydrase inhibition and cytotoxic activity of novel chromone-based sulfonamide derivatives, Eur. J. Med. Chem. 96 (2015), pp. 425–435.
  • C. Congiu, V. Onnis, A. Deplano, G. Balboni, N. Dedeoglu, and C.T. Supuran, Synthesis of sulfonamides incorporating piperazinyl-ureido moieties and their carbonic anhydrase I, II, IX and XII inhibitory activity, Bioorg. Med. Chem. Lett. 25 (2015), pp. 3850–3853.
  • D.A. Ibrahim, D.S. Lasheen, M.Y. Zaky, A.W. Ibrahim, D. Vullo, M. Ceruso, C.T. Supuran, and D.A.A. El Ella, Design and synthesis of benzothiazole-6-sulfonamides acting as highly potent inhibitors of carbonic anhydrase isoforms I, II, IX and XII, Bioorg. Med. Chem. 23 (2015), pp. 4989–4999.
  • M. Durgun, H. Turkmen, M. Ceruso, and C.T. Supuran, Synthesis of Schiff base derivatives of 4-(2-aminoethyl)-benzenesulfonamide with inhibitory activity against carbonic anhydrase isoforms I, II, IX and XII, Bioorg. Med. Chem. Lett. 25 (2015), pp. 2377–2381.
  • B. Żołnowska, J. Sławiński, A. Pogorzelska, J. Chojnacki, D. Vullo, and C.T. Supuran, Carbonic anhydrase inhibitors. Synthesis, and molecular structure of novel series N-substituted N′-(2-arylmethylthio-4-chloro-5-methylbenzenesulfonyl) guanidines and their inhibition of human cytosolic isozymes I and II and the transmembrane tumor-associated isozymes IX and XII, Eur. J. Med. Chem. 71 (2014), pp. 135–147.
  • Ö. Güzel-Akdemir, A. Akdemir, N. Karalı, and C.T. Supuran, Discovery of novel isatin-based sulfonamides with potent and selective inhibition of the tumor-associated carbonic anhydrase isoforms IX and XII, Org. Biomol. Chem. 13 (2015), pp. 6493–6499.
  • A. Nocentini, F. Carta, M. Ceruso, G. Bartolucci, and C.T. Supuran, Click-tailed coumarins with potent and selective inhibitory action against the tumor-associated carbonic anhydrases IX and XII, Bioorg. Med. Chem. 23 (2015), pp. 6955–6966.
  • İ. Esirden, R. Ulus, B. Aday, M. Tanç, C.T. Supuran, and M. Kaya, Synthesis of novel acridine bis-sulfonamides with effective inhibitory activity against the carbonic anhydrase isoforms I, II, IX and XII, Bioorg. Med. Chem. 23 (2015), pp. 6573–6580.
  • H.S. Ibrahim, S.M. Abou-Seri, M. Tanc, M.M. Elaasser, H.A. Abdel-Aziz, and C.T. Supuran, Isatin-pyrazole benzenesulfonamide hybrids potently inhibit tumor-associated carbonic anhydrase isoforms IX and XII, Eur. J. Med. Chem. 103 (2015), pp. 583–593.
  • M. Mojzych, M. Ceruso, A. Bielawska, K. Bielawski, E. Fornal, and C.T. Supuran, New pyrazolo [4, 3-e][1, 2, 4] triazine sulfonamides as carbonic anhydrase inhibitors, Bioorg. Med. Chem. 23 (2015), pp. 3674–3680.
  • A. Grandane, M. Tanc, R. Žalubovskis, and C.T. Supuran, Synthesis of 6-aryl-substituted sulfocoumarins and investigation of their carbonic anhydrase inhibitory action, Bioorg. Med. Chem. 23 (2015), pp. 1430–1436.
  • S. Carradori, A. Mollica, M. Ceruso, M. D’Ascenzio, C. De Monte, P. Chimenti, R. Sabia, A. Akdemir, and C.T. Supuran, New amide derivatives of Probenecid as selective inhibitors of carbonic anhydrase IX and XII: Biological evaluation and molecular modelling studies, Bioorg. Med. Chem. 23 (2015), pp. 2975–2981.
  • A. Grandane, M. Tanc, L. Di Cesare Mannelli, F. Carta, C. Ghelardini, R. Žalubovskis, and C.T. Supuran, 6-Substituted sulfocoumarins are selective carbonic anhdydrase IX and XII inhibitors with significant cytotoxicity against colorectal cancer cells, J. Med. Chem. 58 (2015), pp. 3975–3983.
  • I.N. Cvijetić, M. Tanç, I.O. Juranić, T.Ž. Verbić, C.T. Supuran, and B.J. Drakulić, 5-Aryl-1H-pyrazole-3-carboxylic acids as selective inhibitors of human carbonic anhydrases IX and XII, Bioorg. Med. Chem. 23 (2015), pp. 4649–4659.
  • R. Yaseen, D. Ekinci, M. Senturk, A.D. Hameed, S. Ovais, P. Rathore, M. Samim, K. Javed, and C.T. Supura, Pyridazinone substituted benzenesulfonamides as potent carbonic anhydrase inhibitors, Bioorg. Med. Chem. Lett. 26 (2016), pp. 1337–1341.
  • F.Z. Küçükbay, H. Küçükbay, M. Tanc, and C.T. Supuran, Synthesis and carbonic anhydrase inhibitory properties of amino acid–coumarin/quinolinone conjugates incorporating glycine, alanine and phenylalanine moieties, J. Enzyme Inhib. Med. Chem. 31 (2016), pp. 1198–1202.
  • E. Čapkauskaitė, A. Zubrienė, A. Smirnov, J. Torresan, M. Kišonaitė, J. Kazokaitė, J. Gylytė, V. Michailovienė, V. Jogaitė, and E. Manakova, Benzenesulfonamides with pyrimidine moiety as inhibitors of human carbonic anhydrases I, II, VI, VII, XII, and XIII, Bioorg. Med. Chem. 21 (2013), pp. 6937–6947.
  • M.R. Buemi, L. De Luca, S. Ferro, E. Bruno, M. Ceruso, C.T. Supuran, K. Pospíšilová, J. Brynda, P. Řezáčová, and R. Gitto, Carbonic anhydrase inhibitors: Design, synthesis and structural characterization of new heteroaryl-N-carbonylbenzenesulfonamides targeting druggable human carbonic anhydrase isoforms, Eur. J. Med. Chem. 102 (2015), pp. 223–232.
  • A.S. El-Azab, A.-M. Alaa, R.R. Ayyad, M. Ceruso, and C.T. Supuran, Inhibition of carbonic anhydrase isoforms I, II, IV, VII and XII with carboxylates and sulfonamides incorporating phthalimide/phthalic anhydride scaffolds, Bioorg. Med. Chem. 24 (2016), pp. 20–25.
  • A. Sujayev, L. Polat Kose, E. Garibov, İ. Gülçin, V. Farzaliev, S.H. Alwasel, and C.T. Supuran, Synthesis of N-alkyl (aril)-tetra pyrimidine thiones and investigation of their human carbonic anhydrase I and II inhibitory effects, J. Enzyme Inhib. Med. Chem. (2015), pp. 1–6.
  • I. Fidan, R.E. Salmas, M. Arslan, M. Şentürk, S. Durdagi, D. Ekinci, E. Şentürk, S. Coşgun, and C.T. Supuran, Carbonic anhydrase inhibitors: Design, synthesis, kinetic, docking and molecular dynamics analysis of novel glycine and phenylalanine sulfonamide derivatives, Bioorg. Med. Chem. 23 (2015), pp. 7353–7358.
  • B. Turan, K. Şendil, E. Şengül, M.S. Gültekin, P. Taslimi, İ. Gulçin, and C.T. Supuran, The synthesis of some β-lactams and investigation of their metal-chelating activity, carbonic anhydrase and acetylcholinesterase inhibition profiles, J. Enzyme Inhib. Med. Chem. 31 (2016), pp. 1–10.
  • B. Özgeriş, S. Göksu, L.P. Köse, İ. Gülçin, R.E. Salmas, S. Durdagi, F. Tümer, and C.T. Supuran, Acetylcholinesterase and carbonic anhydrase inhibitory properties of novel urea and sulfamide derivatives incorporating dopaminergic 2-aminotetralin scaffolds, Bioorg. Med. Chem. 24 (2016), pp. 2318–2329.
  • T. Artunç, Y. Çetinkaya, H. Göçer, İ. Gülçin, A. Menzek, E. Şahin, and C.T. Supuran, Synthesis of 4‐[2‐(3, 4‐dimethoxybenzyl) cyclopentyl]‐1, 2‐dimethoxybenzene derivatives and evaluations of their carbonic anhydrase isoenzymes inhibitory effects, Chem. Biol. Drug Des. 87 (2015), pp. 594–607.
  • L.P. Kose, İ. Gulcin, A. Yıldırım, U. Atmaca, M. Çelik, S.H. Alwasel, and C.T. Supuran, The human carbonic anhydrase isoenzymes I and II inhibitory effects of some hydroperoxides, alcohols, and acetates, J. Enzyme Inhib. Med. Chem. 31 (2015), pp. 1–6.
  • H.I. Gul, M. Tugrak, H. Sakagami, P. Taslimi, I. Gulcin, and C.T. Supuran, Synthesis and bioactivity studies on new 4-(3-(4-Substitutedphenyl)-3a, 4-dihydro-3 H-indeno [1, 2-c] pyrazol-2-yl) benzenesulfonamides, J. Enzyme Inhib. Med. Chem. 31 (2016), pp. 1619–1624.
  • H. Release 2002. 7.5 for windows, molecular modeling system. Hypercube Inc; software available at http://www.hyper.com.
  • A. Zubrienė, J. Smirnovienė, A. Smirnov, V. Morkūnaitė, V. Michailovienė, J. Jachno, V. Juozapaitienė, P. Norvaišas, E. Manakova, and S. Gražulis, Intrinsic thermodynamics of 4-substituted-2, 3, 5, 6-tetrafluorobenzenesulfonamide binding to carbonic anhydrases by isothermal titration calorimetry, Biophys. Chem. 205 (2015), pp. 51–65.
  • L.A. Woods, O. Dolezal, B. Ren, J.H. Ryan, T.S. Peat, and S.-A. Poulsen, Native State Mass Spectrometry, Surface Plasmon Resonance, and X-ray Crystallography Correlate Strongly as a Fragment Screening Combination, J. Med. Chem. 59 (2016), pp. 2192–2204.
  • W. Vernier, W. Chong, D. Rewolinski, S. Greasley, T. Pauly, M. Shaw, D. Dinh, R.A. Ferre, S. Nukui, and M. Ornelas, Thioether benzenesulfonamide inhibitors of carbonic anhydrases II and IV: Structure-based drug design, synthesis, and biological evaluation, Bioorg. Med. Chem. 18 (2010), pp. 3307–3319.
  • E.S. Pilka, G. Kochan, U. Oppermann, and W.W. Yue, Crystal structure of the secretory isozyme of mammalian carbonic anhydrases CA VI: Implications for biological assembly and inhibitor development, Biochem. Biophys. Res. Commun. 419 (2012), pp. 485–489.
  • E. Ugochukwu, N. Shafqat, E. Pilka, A. Chaikuad, T. Krojer, J. Muniz J. Kim, J. Bray, C. Bountra, C.H. Arrowsmith, J. Weigelt, A. Edwards, F. von Delft, E.P. Carpenter, W.W. Yue, and U. Oppermann. Crystal Structure of Human Carbonic Anhydrase VII [isoform 1], CA7. Available at https://www.rcsb.org/structure/3mdz.
  • J. Leitans, A. Kazaks, A. Balode, J. Ivanova, R. Zalubovskis, C.T. Supuran, and K. Tars, Efficient expression and crystallization system of cancer-associated carbonic anhydrase isoform IX, J. Med. Chem. 58 (2015), pp. 9004–9009.
  • V. Dudutienė, A. Zubrienė, A. Smirnov, D.D. Timm, J. Smirnovienė, J. Kazokaitė, V. Michailovienė, A. Zakšauskas, E. Manakova, and S. Gražulis, Functionalization of fluorinated benzenesulfonamides and their inhibitory properties toward carbonic anhydrases, ChemMedChem 10 (2015), pp. 662–687.
  • G. La Regina, A. Coluccia, V. Famiglini, S. Pelliccia, L. Monti, D. Vullo, E. Nuti, V. Alterio, G. De Simone, and S.M. Mont, Discovery of 1, 1′-biphenyl-4-sulfonamides as a new class of potent and selective carbonic anhydrase xiv inhibitors, J. Med. Chem. 58 (2015), pp. 8564–8572.
  • H.B. Rao, F. Zhu, G.B. Yang, Z.R. Li, and Y.Z. Chen, Update of PROFEAT: A web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence, Nucleic Acids Res. 39 (2011), pp. W385–W390.
  • R. Sheikhpour, M.A. Sarram, and S. Gharaghani, Constraint score for semi-supervised feature selection in ligand-and receptor-based QSAR on serine/threonine-protein kinase PLK3 inhibitors, Chemom. Intell. Lab. Syst. 163 (2017), pp. 31–40.
  • H. Moghadam, M. Rahgozar, and S. Gharaghani, Scoring multiple features to predict drug disease associations using information fusion and aggregation, SAR QSAR Environ. Res. 27 (2016), pp. 609–628.
  • X. He, D. Cai, and P. Niyogi, Laplacian Score for Feature Selection, Adv. Neural Inf. Process. Syst. 18 (2005), pp. 507–514.
  • G. Doquire and M. Verleysen, Graph Laplacian for semi-supervised feature selection in regression problems, International Work-Conference on Artificial Neural Networks (2011), pp. 248–255.
  • G. Doquire and M. Verleysen, A graph laplacian based approach to semi-supervised feature selection for regression problems, Neurocomputing 121 (2013), pp. 5–13.
  • E. Alpaydin, Introduction to Machine Learning, 2nd ed,. MIT Press Cambridge, 2010.
  • A. Tropsha, P. Gramatica, and V.K. Gombar, The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models, QSAR Comb. Sci. 22 (2003), pp. 69–77.
  • A. Golbraikh and A. Tropsha, Beware of q 2!, J. Mol. Graph. Model. 20 (2002), pp. 269–276.
  • P.P. Roy and K. Roy, On some aspects of variable selection for partial least squares regression models, Mol. Inform. 27 (2008), pp. 302–313.
  • L.H. Hall and L.B. Kier, Electrotopological state indices for atom types: A novel combination of electronic, topological, and valence state information, J. Chem. Inf. Comput. Sci. 35 (1995), pp. 1039–1045.
  • R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics. Vol. 1. Alphabetical Listing; Vol. 2. Appendices, References, Wiley-VCH, Weinheim, 2009.
  • A. Nocentini, D. Moi, G. Balboni, V. Onnis, and C.T. Supuran, Discovery of thiazolin-4-one-based aromatic sulfamates as a new class of carbonic anhydrase isoforms I, II, IV, and IX inhibitors, Bioorg. Chem. 77 (2018), pp. 293–299.
  • H.I. Gul, C. Yamali, H. Sakagami, A. Angeli, J. Leitans, A. Kazaks, K. Tars, D.O. Ozgun, and C.T. Supuran, New anticancer drug candidates sulfonamides as selective hCA IX or hCA XII inhibitors, Bioorg. Chem. 77 (2018), pp. 411–419.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.