218
Views
23
CrossRef citations to date
0
Altmetric
Articles

Finding the structural requirements of diverse HIV-1 protease inhibitors using multiple QSAR modelling for lead identification

Pages 911-933 | Received 06 Aug 2018, Accepted 25 Sep 2018, Published online: 18 Oct 2018
 

ABSTRACT

Multiple Quantitative Structure-Activity Relationship (QSAR) analysis is widely used in drug discovery for lead identification. Human Immunodeficiency Virus (HIV) protease is one of the key targets for the treatment of Acquired Immunodeficiency Syndrome (AIDS). One of the major challenges for the design of HIV-1 protease inhibitors (HIV PRIs) is to increase the inhibitory activities against the enzyme to a level where the problem associated to drug resistance may be considerably delayed. Herein, chemometric analyses were performed with 346 structurally diverse HIV PRIs with experimental bioactivities against a sub-type B mutant to develop highly predictable QSAR models and also to identify the effective structural determinants for higher affinity against HIV PR. The QSAR models were developed using OCHEM-based machine learning tools (ASNN, FSMLR, KNN, RF, MANN and XGBoost), with descriptors calculated by eight different software packages. Simultaneously, a Monte Carlo optimization-based QSAR modelling was performed using SMILES and graph-based descriptors to understand fragment and topochemical contributions. To validate the actual predictability of all these models, an additional set of 104 compounds (also with known experimental activities) with slightly different chemical space were employed. This ligand-based study serves as a crucial benchmark for further development of the HIV protease inhibitors with improved activities.

Acknowledgement

The author is grateful to College of Health Sciences, University of Kwazulu-Natal, South Africa for providing a post-doctoral fellowship.

Declaration of interest statement

The author declares no conflicts of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 543.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.