218
Views
23
CrossRef citations to date
0
Altmetric
Articles

Finding the structural requirements of diverse HIV-1 protease inhibitors using multiple QSAR modelling for lead identification

Pages 911-933 | Received 06 Aug 2018, Accepted 25 Sep 2018, Published online: 18 Oct 2018

References

  • World Health Organization, Global Health Observatory (GHO) data. Available at: http://www.who.int/gho/hiv/en/.
  • S. Hue, R.J. Gifford, D. Dunn, E. Fernhill, and D. Pillay, Demonstration of sustained drug-resistant human immunodeficiency virus type 1 lineages circulating among treatment-naive individuals, J. Virol. 83 (2009), pp. 2645–2654.
  • A.M. Wensing, N.M. van Maarseveen, and M. Nijhuis, Fifteen years of HIV protease inhibitors: Raising the barrier to resistance, Antiviral Res. 85 (2010), pp. 59–74.
  • H.A. Lockhat, J.R. Silva, C.N. Alves, T. Govender, J. Lameira, G.E. Maguire, Y. Sayed, and H.G. Kruger, Binding free energy calculations of nine FDA-approved protease inhibitors against HIV-1 subtype C I36T upward arrowT containing 100 amino acids per monomer, Chem. Biol. Drug Des. 87 (2016), pp. 487–498.
  • A. Wlodawer, M. Miller, M. Jaskolski, B.K. Sathyanarayana, E. Baldwin, I.T. Weber, L.M. Selk, L. Clawson, J. Schneider, and S.B. Kent, Conserved folding in retroviral proteases: Crystal structure of a synthetic HIV-1 protease, Science 245 (1989), pp. 616–621.
  • A.K. Ghosh, H.L. Osswald, and G. Prato, Recent progress in the development of HIV-1 protease inhibitors for the treatment of HIV/AIDS, J. Med. Chem. 59 (2016), pp. 5172–5208.
  • L. Palmisano and S. Vella, A brief history of antiretroviral therapy of HIV infection: Success and challenges, Ann. Ist. Super. Sanita 47 (2011), pp. 44–48.
  • S.B. Maseko, S. Natarajan, V. Sharma, N. Bhattacharyya, T. Govender, Y. Sayed, G.E.M. Maguire, J. Lin, and H.G. Kruger, Purification and characterization of naturally occurring HIV-1 (South African subtype C) protease mutants from inclusion bodies, Protein Expr. Purif. 122 (2016), pp. 90–96.
  • S.B. Maseko, E. Padayachee, T. Govender, Y. Sayed, G. Kruger, G.E.M. Maguire, and J. Lin, I36T I36T↑T mutation in South African subtype C (C-SA) HIV-1 protease significantly alters protease-drug interactions, Biol. Chem. 398 (2017), pp. 1109–1117.
  • Z. Lv, Y. Chu, and Y. Wang, HIV protease inhibitors: A review of molecular selectivity and toxicity, HIV AIDS (Auckl) 7 (2015), pp. 95–104.
  • N. Kurt Yilmaz, R. Swanstrom, and C.A. Schiffer, Improving viral protease inhibitors to counter drug resistance, Trends Microbiol. 24 (2016), pp. 547–557.
  • A. Tropsha, Best practices for QSAR model development, validation, and exploitation, Mol. Inform. 29 (2010), pp. 476–488.
  • R.A. Lewis and D. Wood, Modern 2D QSAR for drug discovery, WIRES Comput. Mol. Sci. 4 (2014), pp. 505–522.
  • Danishuddin and A.U. Khan, Descriptors and their selection methods in QSAR analysis: Paradigm for drug design, Drug Discov. Today 21 (2016), pp.1291–1302.
  • A. Cherkasov, E.N. Muratov, D. Fourches, A. Varnek, I.I. Baskin, M. Cronin, J. Dearden, P. Gramatica, Y.C. Martin, R. Todeschini, V. Consonni, V.E. Kuz’min, R. Cramer, R. Benigni, C. Yang, J. Rathman, L. Terfloth, J. Gasteiger, A. Richard, and A. Tropsha, QSAR modeling: Where have you been? Where are you going to?, J. Med. Chem. 57 (2014), pp. 4977–5010.
  • S.C. Basak, D. Mills, R. Garg, and B. Bhhatarai, A QSAR study of HIV protease inhibitors using theoretical descriptors, Curr. Comput. Aided Drug Des. 6 (2010), pp. 269–282.
  • M.H. Fatemi, A. Heidari, and S. Gharaghani, QSAR prediction of HIV-1 protease inhibitory activities using docking derived molecular descriptors, J. Theor. Biol. 369 (2015), pp. 13–22.
  • A.K. Halder and T. Jha, Validated predictive QSAR modeling of N-aryl-oxazolidinone-5-carboxamides for anti-HIV protease activity, Bioorg. Med. Chem. Lett. 20 (2010), pp. 6082–6087.
  • M. Ibrahim, N.A. Saleh, W.M. Elshemey, and A.A. Elsayed, Fullerene derivative as anti-HIV protease inhibitor: Molecular modeling and QSAR approaches, Mini Rev. Med. Chem. 12 (2012), pp. 447–451.
  • M.A.P. Islam and T.S. Pillay, Simplified molecular input line entry system-based descriptors in QSAR modeling for HIV-protease inhibitors, Chemom. Intell. Lab. Sys. 153 (2014), pp. 67–74.
  • K. Roy, S. Kar, and R.N. Das, Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment, Elsevier Academic Press, Amsterdam; Boston, 2015.
  • J.V. Zivkovic, N.V. Trutic, J.B. Veselinovic, G.M. Nikolic, and A.M. Veselinovic, Monte Carlo method based QSAR modeling of maleimide derivatives as glycogen synthase kinase-3beta inhibitors, Comput. Biol. Med. 64 (2015), pp. 276–282.
  • J.B. Mitchell, Machine learning methods in chemoinformatics, Wiley Interdiscip. Rev. Comput. Mol. Sci. 4 (2014), pp. 468–481.
  • B. Nizami, I.V. Tetko, N.A. Koorbanally, and B. Honarparvar, QSAR models and scaffold-based analysis of non-nucleoside HIV RT inhibitors, Chemom. Intell. Lab. Sys. 148 (2015), pp. 134–144
  • P. Polishchuk, Interpretation of quantitative structure-activity relationship models: Past, present, and future, J. Chem. Inf. Model. 57 (2017), pp. 2618–2639.
  • I.V. Tetko, Neural network studies. 4. Introduction to associative neural networks, J. Chem. Inf. Comput. Sci. 42 (2002), pp. 717–728.
  • I.V. Tetko, Associative neural network, Meth. Mol. Biol. 458 (2008), pp. 185–202.
  • G.W. Kauffman and P.C. Jurs, QSAR and k-nearest neighbor classification analysis of selective cyclooxygenase-2 inhibitors using topologically-based numerical descriptors, J. Chem. Inf. Comput. Sci. 41 (2001), pp. 1553–1560.
  • L. Breiman, Random forests, Machine Learn. 45 (2001), pp. 5–32.
  • T. Chen and C. Guestrin, XGBoost: A Scalable Tree Boosting System, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, 2016.
  • J.N. Wei, D. Duvenaud, and A. Aspuru-Guzik, Neural networks for the prediction of organic chemistry reactions, ACS Cent. Sci. 2 (2016), pp. 725–732.
  • H. Zhu, A. Tropsha, D. Fourches, A. Varnek, E. Papa, P. Gramatica, T. Oberg, P. Dao, A. Cherkasov, and I.V. Tetko, Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis, J. Chem. Inf. Model. 48 (2008), pp. 766–784.
  • J.B. Veselinovic, A.M. Veselinovic, A.P. Toropova, and A.A. Toropov, The Monte Carlo technique as a tool to predict LOAEL, Eur. J. Med. Chem. 116 (2016), pp. 71–75.
  • A.M. Veselinovic, J.B. Veselinovic, J.V. Zivkovic, and G.M. Nikolic, Application of SMILES notation based optimal descriptors in drug discovery and design, Curr. Top. Med. Chem. 15 (2015), pp. 1768–1779.
  • A.P. Toropova, A.A. Toropov, J.B. Veselinovic, F.N. Miljkovic, and A.M. Veselinovic, QSAR models for HEPT derivates as NNRTI inhibitors based on Monte Carlo method, Eur. J. Med. Chem. 77 (2014), pp. 298–305.
  • E. Anderson, G.D. Veith, D. Weininger, and Environmental Research Laboratory (Duluth Minn.), SMILES, a line notation and computerized interpreter for chemical structures, Environmental research brief, U.S. Environmental Protection Agency, Environmental Research Laboratory, Duluth, MN, 1987.
  • Q. Li, X. Ding, H. Si, and H. Gao, QSAR model based on SMILES of inhibitory rate of 2,3-diarylpropenoic acids on AKR1C3, Chemom. Intell. Lab. Syst. 139 (2014), pp. 120–126.
  • C. Mondal, A.K. Halder, N. Adhikari, A. Saha, K.D. Saha, S. Gayen, and T. Jha, Comparative validated molecular modeling of p53-HDM2 inhibitors as antiproliferative agents, Eur. J. Med. Chem. 90 (2015), pp. 860–875.
  • J.B. Veselinovic, A.A. Toropov, A.P. Toropova, G.M. Nikolic, and A.M. Veselinovic, Monte Carlo method-based QSAR modeling of penicillins binding to human serum proteins, Arch. Pharm. (Weinheim) 348 (2015), pp. 62–67.
  • Y. Cheng, T.A. Rano, T.T. Huening, F. Zhang, Z. Lu, W.A. Schleif, L. Gabryelski, D.B. Olsen, M. Stahlhut, L.C. Kuo, J.H. Lin, X. Xu, L. Jin, T.V. Olah, D.A. McLoughlin, R.C. King, K.T. Chapman, and J.R. Tata, A combinatorial library of indinavir analogues and its in vitro and in vivo studies, Bioorg. Med. Chem. Lett. 12 (2002), pp. 529–532.
  • Y. Cheng, F. Zhang, T.A. Rano, Z. Lu, W.A. Schleif, L. Gabryelski, D.B. Olsen, M. Stahlhut, C.A. Rutkowski, J.H. Lin, L. Jin, E.A. Emini, K.T. Chapman, and J.R. Tata, Indinavir analogues with blocked metabolism sites as HIV protease inhibitors with improved pharmacological profiles and high potency against PI-resistant viral strains, Bioorg. Med. Chem. Lett. 12 (2002), pp. 2419–2422.
  • B.D. Dorsey, C. McDonough, S.L. McDaniel, R.B. Levin, C.L. Newton, J.M. Hoffman, P.L. Darke, J.A. Zugay-Murphy, E.A. Emini, W.A. Schleif, D.B. Olsen, M.W. Stahlhut, C.A. Rutkowski, L.C. Kuo, J.H. Lin, I.W. Chen, S.R. Michelson, M.K. Holloway, J.R. Huff, and J.P. Vacca, Identification of MK-944a: A second clinical candidate from the hydroxylaminepentanamide isostere series of HIV protease inhibitors, J. Med. Chem. 43 (2000), pp. 3386–3399.
  • J.L. Duffy, N.J. Kevin, B.A. Kirk, K.T. Chapman, W.A. Schleif, D.B. Olsen, M. Stahlhut, C.A. Rutkowski, L.C. Kuo, L. Jin, J.H. Lin, E.A. Emini, and J.R. Tata, Synthesis and activity of novel HIV protease inhibitors with improved potency against multiple PI-resistant viral strains, Bioorg. Med. Chem. Lett. 12 (2002), pp. 2423–2426.
  • J.L. Duffy, B.A. Kirk, N.J. Kevin, K.T. Chapman, W.A. Schleif, D.B. Olsen, M. Stahlhut, C.A. Rutkowski, L.C. Kuo, L. Jin, J.H. Lin, E.A. Emini, and J.R. Tata, HIV-1 protease inhibitors with picomolar potency against PI-resistant HIV-1 by modification of the P1’ substituent, Bioorg. Med. Chem. Lett. 13 (2003), pp. 3323–3326.
  • A.K. Ghosh, W.J. Thompson, P.M. Munson, L. Wenming, and J.R. Huff, Cyclic sulfone-3-carboxamides as novel P2-ligands for Ro 31-8959 based HIV-1 protease inhibitors, Bioorg. Med. Chem. Lett. 5 (1995), pp. 83–88.
  • A.K. Ghosh, W.J. Thompson, P.M. Fitzgerald, J.C. Culberson, M.G. Axel, S.P. McKee, J.R. Huff, and P.S. Anderson, Structure-based design of HIV-1 protease inhibitors: Replacement of two amides and a 10 pi-aromatic system by a fused bis-tetrahydrofuran, J. Med. Chem. 37 (1994), pp. 2506–2508.
  • M.K. Holloway, J.M. Wai, T.A. Halgren, P.M. Fitzgerald, J.P. Vacca, B.D. Dorsey, R.B. Levin, W.J. Thompson, L.J. Chen, and S.J. deSolms, A priori prediction of activity for HIV-1 protease inhibitors employing energy minimization in the active site, J. Med. Chem. 38 (1995), pp. 305–317.
  • N.J. Kevin, J.L. Duffy, B.A. Kirk, K.T. Chapman, W.A. Schleif, D.B. Olsen, M. Stahlhut, C.A. Rutkowski, L.C. Kuo, L. Jin, J.H. Lin, E.A. Emini, and J.R. Tata, Novel HIV-1 protease inhibitors active against multiple PI-resistant viral strains: Coadministration with indinavir, Bioorg. Med. Chem. Lett. 13 (2003), pp. 4027–4030.
  • E. Kim, B.E. Evans, K.F. Gilbert, C.M. Hanifin, J.P. Vacca, S.R. Michelson, P.L. Darke, J.A. Zugay, E.A. Emini, W. Schleif, J.H. Lin, I.W. Chen, K. Vastag, P.S. Anderson, and J.R. Huff, Cycloalkylpiperazines as HIV-1 protease inhibitors: Enhanced oral absorption, Bioorg. Med. Chem. Lett. 5 (1995), pp. 2707–2712.
  • R.M. Kim, E.A. Rouse, K.T. Chapman, W.A. Schleif, D.B. Olsen, M. Stahlhut, C.A. Rutkowski, E.A. Emini, and J.R. Tata, P1’ oxadiazole protease inhibitors with excellent activity against native and protease inhibitor-resistant HIV-1, Bioorg. Med. Chem. Lett. 14 (2004), pp. 4651–4654.
  • Z. Lu, J. Bohn, T. Rano, C.A. Rutkowski, A.L. Simcoe, D.B. Olsen, W.A. Schleif, A. Carella, L. Gabryelski, L. Jin, J.H. Lin, E. Emini, K. Chapman, and J.R. Tata, Orally bioavailable highly potent HIV protease inhibitors against PI-resistant virus, Bioorg. Med. Chem. Lett. 15 (2005), pp. 5311–5314.
  • Z. Lu, S. Raghavan, J. Bohn, M. Charest, M.W. Stahlhut, C.A. Rutkowski, A.L. Simcoe, D.B. Olsen, W.A. Schleif, A. Carella, L. Gabryelski, L. Jin, J.H. Lin, E. Emini, K. Chapman, and J.R. Tata, Design and synthesis of highly potent HIV protease inhibitors with activity against resistant virus, Bioorg. Med. Chem. Lett. 13 (2003), pp. 1821–1824.
  • S. Raghavan, Z. Lu, T. Beeson, K.T. Chapman, W.A. Schleif, D.B. Olsen, M. Stahlhut, C.A. Rutkowski, L. Gabryelski, E. Emini, and J.R. Tata, Synthesis of novel HIV protease inhibitors (PI) with activity against PI-resistant virus, Bioorg. Med. Chem. Lett. 17 (2007), pp. 5432–5436.
  • S. Raghavan, Z. Yang, R.T. Mosley, W.A. Schleif, L. Gabryelski, D.B. Olsen, M. Stahlhut, L.C. Kuo, E.A. Emini, K.T. Chapman, and J.R. Tata, Combinatorial library of indinavir analogues: Replacement for the aminoindanol at P2’, Bioorg. Med. Chem. Lett. 12 (2002), pp. 2855–2858.
  • T.A. Rano, Y. Cheng, T.T. Huening, F. Zhang, W.A. Schleif, L. Gabryelski, D.B. Olsen, L.C. Kuo, J.H. Lin, X. Xu, T.V. Olah, D.A. McLoughlin, R. King, K.T. Chapman, and J.R. Tata, Combinatorial diversification of indinavir: In vivo mixture dosing of an HIV protease inhibitor library, Bioorg. Med. Chem. Lett. 10 (2000), pp. 1527–1530.
  • F. Zhang, K.T. Chapman, W.A. Schleif, D.B. Olsen, M. Stahlhut, C.A. Rutkowski, L.C. Kuo, L. Jin, J.H. Lin, E.A. Emini, and J.R. Tata, The design, synthesis and evaluation of novel HIV-1 protease inhibitors with high potency against PI-resistant viral strains, Bioorg. Med. Chem. Lett. 13 (2003), pp. 2573–2576.
  • S.D. Young, L.S. Payne, W.J. Thompson, N. Gaffin, T.A. Lyle, S.F. Britcher, S.L. Graham, T.H. Schultz, A.A. Deana, P.L. Darke, J. Zugay, W.A. Schleif, J.C. Quintero, E.A. Emini, P.S. Anderson, and J.R. Huff, HIV-1 protease inhibitors based on hydroxyethylene dipeptide isosteres - an investigation into the role of the P1’ side-chain on structure activity, J. Med. Chem. 35 (1992), pp. 1702–1709.
  • J.P. Vacca, J.P. Guare, S.J. Desolms, W.M. Sanders, E.A. Giuliani, S.D. Young, P.L. Darke, J. Zugay, I.S. Sigal, W.A. Schleif, J.C. Quintero, E.A. Emini, P.S. Anderson, and J.R. Huff, L-687,908, a potent hydroxyethylene-containing HIV protease inhibitor, J. Med. Chem. 34 (1991), pp. 1225–1228.
  • T.J. Tucker, W.C. Lumma, L.S. Payne, J.M. Wai, S.J. Desolms, E.A. Giuliani, P.L. Darke, J.C. Heimbach, J.A. Zugay, W.A. Schleif, J.C. Quintero, E.A. Emini, J.R. Huff, and P.S. Anderson, A series of potent HIV-1 protease inhibitors containing a hydroxyethyl secondary amine transition-state isostere - synthesis, enzyme-inhibition, and antiviral activity, J. Med. Chem. 35 (1992), pp. 2525–2533.
  • W.J. Thompson, P.M.D. Fitzgerald, M.K. Holloway, E.A. Emini, P.L. Darke, B.M. Mckeever, W.A. Schleif, J.C. Quintero, J.A. Zugay, T.J. Tucker, J.E. Schwering, C.F. Homnick, J. Nunberg, J.P. Springer, and J.R. Huff, Synthesis and antiviral activity of a series of HIV-1 protease inhibitors with functionality tethered to the P1 or P1’ phenyl substituents - X-ray crystal-structure assisted design, J. Med. Chem. 35 (1992), pp. 1685–1701.
  • T.A. Lyle, C.M. Wiscount, J.P. Guare, W.J. Thompson, P.S. Anderson, P.L. Darke, J.A. Zugay, E.A. Emini, W.A. Schleif, J.C. Quintero, R.A.F. Dixon, I.S. Sigal, and J.R. Huff, Benzocycloalkyl amines as novel C-termini for HIV protease inhibitors, J. Med. Chem. 34 (1991), pp. 1228–1230.
  • A.K. Ghosh, W.J. Thompson, H.Y. Lee, S.P. Mckee, P.M. Munson, T.T. Duong, P.L. Darke, J.A. Zugay, E.A. Emini, W.A. Schleif, J.R. Huff, and P.S. Anderson, Cyclic sulfolanes as novel and high-affinity P-2 ligands for HIV-1 protease inhibitors, J. Med. Chem. 36 (1993), pp. 924–927.
  • A.K. Ghosh, W.J. Thompson, M.K. Holloway, S.P. Mckee, T.T. Duong, H.Y. Lee, P.M. Munson, A.M. Smith, J.M. Wai, P.L. Darke, J.A. Zugay, E.A. Emini, W.A. Schleif, J.R. Huff, and P.S. Anderson, Potent HIV protease inhibitors - the development of tetrahydrofuranylglycines as novel P(2)-ligands and pyrazine amides as P(3)-ligands, J. Med. Chem. 36 (1993), pp. 2300–2310.
  • A.K. Ghosh, W.J. Thompson, S.P. Mckee, T.T. Duong, T.A. Lyle, J.C. Chen, P.L. Darke, J.A. Zugay, E.A. Emini, W.A. Schleif, J.R. Huff, and P.S. Anderson, 3-tetrahydrofuran and pyran urethanes as high-affinity P2-ligands for HIV-1 protease inhibitors, J. Med. Chem. 36 (1993), pp. 292–294.
  • A.K. Ghosh, H.Y. Lee, W.J. Thompson, C. Culberson, M.K. Holloway, S.P. Mckee, P.M. Munson, T.T. Duong, A.M. Smith, P.L. Darke, J.A. Zugay, E.A. Emini, W.A. Schleif, J.R. Huff, and P.S. Anderson, The development of cyclic sulfolanes as novel and high-affinity P(2) ligands for HIV-1 protease inhibitors, J. Med. Chem. 37 (1994), pp. 1177–1188.
  • B.D. Dorsey, R.B. Levin, S.L. Mcdaniel, J.P. Vacca, J.P. Guare, P.L. Darke, J.A. Zugay, E.A. Emini, W.A. Schleif, J.C. Quintero, J.H. Lin, I.W. Chen, M.K. Holloway, P.M.D. Fitzgerald, M.G. Axel, D. Ostovic, P.S. Anderson, and J.R. Huff, L-735,524 - the design of a potent and orally bioavailable HIV protease inhibitor, J. Med. Chem. 37 (1994), pp. 3443–3451.
  • P.R. Jayatilleke, A.C. Nair, R. Zauhar, and W.J. Welsh, Computational studies on HIV-1 protease inhibitors: Influence of calculated inhibitor-enzyme binding affinities on the statistical quality of 3D-QSAR CoMFA models, J. Med. Chem. 43 (2000), pp. 4446–4451.
  • C.C. Mak, V.D. Le, Y.C. Lin, J.H. Elder, and C.H. Wong, Design, synthesis, and biological evaluation of HIV/FIV protease inhibitors incorporating a conformationally constrained macrocycle with a small P3’ residue, Bioorg. Med. Chem. Lett. 11 (2001), pp. 219–222.
  • C. Perez, M. Pastor, A.R. Ortiz, and F. Gago, Comparative binding energy analysis of HIV-1 protease inhibitors: Incorporation of solvent effects and validation as a powerful tool in receptor-based drug design, J. Med. Chem. 41 (1998), pp. 836–852.
  • M. Vieth and D.J. Cummins, DoMCoSAR: A novel approach for establishing the docking mode that is consistent with the structure-activity relationship. Application to HIV-1 protease inhibitors and VEGF receptor tyrosine kinase inhibitors, J. Med. Chem. 43 (2000), pp. 3020–3032.
  • N.A. Yehia, W. Antuch, B. Beck, S. Hess, V. Schauer-Vukasinovic, M. Almstetter, P. Furer, E. Herdtweck, and A. Domling, Novel nonpeptidic inhibitors of HIV-1 protease obtained via a new multicomponent chemistry strategy, Bioorg. Med. Chem. Lett. 14 (2004), pp. 3121–3125.
  • I. Sushko, S. Novotarskyi, R. Korner, A.K. Pandey, M. Rupp, W. Teetz, S. Brandmaier, A. Abdelaziz, V.V. Prokopenko, V.Y. Tanchuk, R. Todeschini, A. Varnek, G. Marcou, P. Ertl, V. Potemkin, M. Grishina, J. Gasteiger, C. Schwab, I.I. Baskin, V.A. Palyulin, E.V. Radchenko, W.J. Welsh, V. Kholodovych, D. Chekmarev, A. Cherkasov, J. Aires-de-Sousa, Q.Y. Zhang, A. Bender, F. Nigsch, L. Patiny, A. Williams, V. Tkachenko, and I.V. Tetko, Online chemical modeling environment (OCHEM): Web platform for data storage, model development and publishing of chemical information, J. Comput. Aided Mol. Des. 25 (2011), pp. 533–554.
  • T. Tollenaere, SuperSAB: Fast adaptive back propagation with good scaling properties, Neural Networks 3 (1990), pp. 561–573.
  • M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten, The WEKA data mining software: An update, SIGKDD Explor. Newsl. 11 (2009), pp. 10–18.
  • S. Vorberg and I.V. Tetko, Modeling the biodegradability of chemical compounds using the Online CHEmical modeling environment (OCHEM), Mol. Inform. 33 (2014), pp. 73–85.
  • V. Kovalishyn, N. Abramenko, I. Kopernyk, L. Charochkina, L. Metelytsia, I.V. Tetko, W. Peijnenburg, and L. Kustov, Modelling the toxicity of a large set of metal and metal oxide nanoparticles using the OCHEM platform, Food Chem. Toxicol. 112 (2018), pp. 507–517.
  • M. Dehmer, K. Varmuza, D. Bonchev, and Ebrary Inc., Statistical modelling of molecular descriptors in QSAR/QSPR, preprint (2012). Available at Weinheim Chichester. 11346378.
  • J. Sadowski, J. Gasteiger, and G. Klebe, Comparison of automatic three-dimensional model builders using 639 X-ray structures, J. Chem. Inf. Comput. Sci., 34 (1994), pp. 1000–1008.
  • D.C. Whitley, M.G. Ford, and D.J. Livingstone, Unsupervised forward selection: A method for eliminating redundant variables, J. Chem. Inf. Comput. Sci. 40 (2000), pp. 1160–1168.
  • L. Breiman, Bagging predictors, Machine Learn. 24 (1996), pp. 123–140.
  • K. Roy, S. Kar, and P. Ambure, On a simple approach for determining applicability domain of QSAR models, Chemom. Intell. Lab. Syst. 145 (2015), pp. 22–29.
  • I. Sushko, S. Novotarskyi, R. Korner, A.K. Pandey, A. Cherkasov, J. Li, P. Gramatica, K. Hansen, T. Schroeter, K.R. Muller, L. Xi, H. Liu, X. Yao, T. Oberg, F. Hormozdiari, P. Dao, C. Sahinalp, R. Todeschini, P. Polishchuk, A. Artemenko, V. Kuz’min, T.M. Martin, D.M. Young, D. Fourches, E. Muratov, A. Tropsha, I. Baskin, D. Horvath, G. Marcou, C. Muller, A. Varnek, V.V. Prokopenko, and I.V. Tetko, Applicability domains for classification problems: Benchmarking of distance to models for Ames mutagenicity set, J. Chem. Inf. Model. 50 (2010), pp. 2094–2111.
  • I.V. Tetko, I. Sushko, A.K. Pandey, H. Zhu, A. Tropsha, E. Papa, T. Oberg, R. Todeschini, D. Fourches, and A. Varnek, Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: Focusing on applicability domain and overfitting by variable selection, J. Chem. Inf. Model. 48 (2008), pp. 1733–1746.
  • A.P. Toropova, A.A. Toropov, E. Benfenati, D. Leszczynska, and J. Leszczynski, QSAR model as a random event: A case of rat toxicity, Bioorg. Med. Chem. 23 (2015), pp. 1223–1230.
  • A.A. Toropov, A.P. Toropova, L. Cappellini, E. Benfenati, and E. Davoli, QSPR analysis of threshold of odor for the large number of heterogenic chemicals, Mol. Divers. 22 (2018), pp. 397–403.
  • A.A. Toropov, A.P. Toropova, M. Beeg, M. Gobbi, and M. Salmona, QSAR model for blood-brain barrier permeation, J. Pharmacol. Toxicol. Methods. 88 (2017), pp. 7–18.
  • Dassault Systemes, Biovia, Discovery Studio Modeling Environment, Release 2017, DassaultSystemes, San Diego, 2016.
  • A.K. Halder, A. Saha, and T. Jha, Exploring QSAR and pharmacophore mapping of structurally diverse selective matrix metalloproteinase-2 inhibitors, J. Pharm. Pharmacol. 65 (2013), pp. 1541–1554.
  • P.K. Ojha and K. Roy, Chemometric modeling, docking and in silico design of triazolopyrimidine-based dihydroorotate dehydrogenase inhibitors as antimalarials, Eur. J. Med. Chem. 45 (2010), pp. 4645–4656.
  • A.P. Toropova, A.A. Toropov, E. Benfenati, G. Gini, D. Leszczynska, and J. Leszczynski, CORAL: Quantitative structure-activity relationship models for estimating toxicity of organic compounds in rats, J. Comput. Chem. 32 (2011), pp. 2727–2733.
  • A. K. Halder, A. Saha, and T. Jha, Predictive quantitative structure toxicity relationship study on avian toxicity of some diverse agrochemical pesticides by Monte Carlo method: QSTR on pesticides, Int. J. Quant. Struct.-Prop. Relat. 2 (2017), pp. 19–34.
  • I.V. Tetko, V.Y. Tanchuk, and A.E. Villa, Prediction of n-octanol/water partition coefficients from PHYSPROP database using artificial neural networks and E-state indices, J. Chem. Inf. Comput. Sci. 41 (2001), pp. 1407–1421.
  • A. Golbraikh and A. Tropsha, Beware of q2!, J. Mol. Graph. Model. 20 (2002), pp. 269–276.
  • P.K. Ojha, I. Mitra, R.N. Das, and K. Roy, Further exploring rm2 metrics for validation of QSPR models, Chemom. Intell. Lab. Sys. 107 (2011), pp. 194–205.
  • P.K. Ojha and K. Roy, Comparative QSARs for antimalarial endochins: Importance of descriptor-thinning and noise reduction prior to feature selection, Chemom. Intell. Lab. Sys. 109 (2011), pp. 146–161.
  • A.A. Toropov, A.P. Toropova, F. Pizzo, A. Lombardo, D. Gadaleta, and E. Benfenati, CORAL: Model for no observed adverse effect level (NOAEL), Mol. Divers. 19 (2015), pp. 563–575.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.