333
Views
0
CrossRef citations to date
0
Altmetric
Articles

Prediction of non-carcinogenic health risk using Hybrid Monte Carlo-machine learning approach

, , , , , & show all
Pages 777-800 | Received 12 Nov 2022, Accepted 04 Mar 2023, Published online: 23 Mar 2023
 

Abstract

Groundwater contamination caused by elevated nitrate levels and its associated health effects is a serious global concern. The U.S. Environmental Protection Agency has developed a method for assessing potential human health risks from groundwater contamination that involves extensive groundwater sampling and analysis. However, this approach can be labor intensive and stand as a constraint to the robustness of the traditional approach. Here in machine learning (ML) could be alternative approaches to bridging the contemporary challenges. Machine learning models (ML) such as deep neural networks (DNN), gradient boosting machines (GBM), random forests (RF) and generalized linear models (GLM) can provide alternative solutions to overcome these limitations. In this study, the effectiveness of Hybrid Monte Carlo Machine Learning (MC-ML) models was evaluated by predicting health risks using hazard quotients. A total of 32 groundwater samples were collected and analyzed for nitrate and physical properties during the pre- and post-monsoon seasons. The results showed that the groundwater was severely contaminated by elevated nitrate concentrations, leading to high hazard quotient values. The prediction model results and validation using error and performance metrics showed that the Hybrid MC-DNN model outperformed the other models in both the training and testing phases. These results suggest that this surrogate approach could be a promising alternative to traditional health risk assessment methods.

Acknowledgement

We would like to thanks Department of Civil engineering (Environmental Engineering) Laboratory, NIT Agartala for providing resources to carry out the lab testing and analysis.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 358.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.