333
Views
0
CrossRef citations to date
0
Altmetric
Articles

Prediction of non-carcinogenic health risk using Hybrid Monte Carlo-machine learning approach

, , , , , & show all
Pages 777-800 | Received 12 Nov 2022, Accepted 04 Mar 2023, Published online: 23 Mar 2023

References

  • Abascal E, Gómez CL, Ortiz I, Ortiz A. 2022. Global diagnosis of nitrate pollution in groundwater and review of removal technologies. Sci Total Environ. 810:152233. doi:10.1016/j.scitotenv.2021.152233.
  • Adi S, Hartanto AD, Utami E, Raharjo S, Oyong I.. The effect of data acquisition techniques in profiling analysis based on twitter. In 2019 International Conference on Information and Communications Technology (ICOIACT) IEEE, 2020 July, 868–871. doi:10.1109/ICOIACT46704.2019.8938549.
  • Adimalla N. 2019. Groundwater quality for drinking and irrigation purposes and potential health risks assessment: a case study from semi-arid region of South India. Expo Health. 11(2):109–123. doi:10.1007/s12403-018-0288-8.
  • Adimalla N. 2020. Spatial distribution, exposure, and potential health risk assessment from nitrate in drinking water from semi-arid region of South India. Hum Ecol Risk Assess [Internet]. 26(2):310–334. doi:10.1080/10807039.2018.1508329.
  • Adimalla N, Qian H, Tiwari DM. 2021. Groundwater chemistry, distribution and potential health risk appraisal of nitrate enriched groundwater: a case study from the semi-urban region of South India. Ecotoxicol Environ Saf. 207(126):111277. doi:10.1016/j.ecoenv.2020.111277.
  • Ahada CPS, Suthar S. 2018. Groundwater nitrate contamination and associated human health risk assessment in southern districts of Punjab, India. Environ Sci Pollut Res Int. 25(25):25336–25347. doi:10.1007/s11356-018-2581-2
  • Ahmed U, Mumtaz R, Anwar H, Shah AA, Irfan R, García-Nieto J. 2019. Efficient water quality prediction using supervised machine learning. Water 11(11):2210. doi:10.3390/w11112210.
  • APHA 2005. Standard Methods for the Examination of Water and Wastewater, 21st ed.; APHA:Washington, DC, USA, 2005. Am Water Work Assoc Public Work Assoc Environ Fed. 552.
  • Araromi DO, Majekodunmi OT, Adeniran JA, Salawudeen TO. 2018. Modeling of an activated sludge process for effluent prediction—a comparative study using ANFIS and GLM regression. Environ Monit Assess. 190:1–17. doi:10.1007/s10661-018-6878-x.
  • Badeenezhad A, Radfard M, Passalari H, Parseh I, Abbasi F, Rostami S. 2021. Factors affecting the nitrate concentration and its health risk assessment in drinking groundwater by application of Monte Carlo simulation and geographic information system. Hum Ecol Risk Assess [Internet]. 27(6):1458–1471. doi:10.1080/10807039.2019.1655634.
  • Bhattacharyya T, Sarkar D, Pal DK, Mandal C, Baruah U, Telpande B, Vaidya PH. 2010. Soil information system for resource management - Tripura as a case study. Curr Sci. 99(9):1208–1217.
  • Breiman L. 2001. Machine Learning. 45(1):5–32. doi:10.1023/A:1010933404324.
  • Calderer M, Gibert O, Martí V, Rovira M, De Pablo J, Jordana S, Duro L, Guimerá J, Bruno J. 2010. Denitrification in presence of acetate and glucose for bioremediation of nitrate-contaminated groundwater. Environ Technol. 31(7):799–814. doi:10.1080/09593331003667741
  • Chakma A, Bhowmik T, Mallik S, Mishra U. 2022. Application of GIS and geostatistical interpolation method for groundwater mapping. In Adv Model Innov Water Resour Eng. Selected Proceedings of AMIWRE 2021: Springer; Singapore. 419–428.
  • Chatterjee R, Gupta BK, Mohiddin SK, Singh PN, Shekhar S, Purohit R. 2009. Dynamic groundwater resources of national capital territory, Delhi: Assessment, development and management options. Environ Earth Sci. 59(3):669–686. doi:10.1007/s12665-009-0064-y
  • Chen J, Wu H, Qian H. 2016. Groundwater nitrate contamination and associated health risk for the rural communities in an agricultural area of Ningxia, northwest China. Expo Health. 8(3):349–359. doi:10.1007/s12403-016-0208-8
  • Chen J, Wu H, Qian H, Gao Y. 2017. Assessing nitrate and fluoride contaminants in drinking water and their health risk of rural residents living in a semiarid region of Northwest China. Expo Health. 9(3):183–195. doi:10.1007/s12403-016-0231-9
  • Chen W, Peng J, Hong H, Shahabi H, Pradhan B, Liu J, Zhu AX, Pei X, Duan Z. 2018. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Sci Total Environ. 626:1121–1135. doi:10.1016/j.scitotenv.2018.01.124.
  • Chen J, de Hoogh K, Gulliver J, Hoffmann B, Hertel O, Ketzel M, Bauwelinck M, van Donkelaar A, Hvidtfeldt UA, Katsouyanni K, et al. 2019. A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide. Environ Int. 130:104934., doi:10.1016/j.envint.2019.104934
  • Das B, Pal SC. 2020. Assessment of groundwater vulnerability to over-exploitation using MCDA, AHP, fuzzy logic and novel ensemble models: a case study of Goghat-I and II blocks of West Bengal, India. Environ Earth Sci. 79(5):1–16. doi:10.1007/s12665-020-8843-6.
  • Di B, Zhang H, Liu Y, Li J, Chen N, Stamatopoulos CA, Luo Y, Zhan Y. 2019. Assessing susceptibility of debris flow in southwest China using gradient boosting machine. Sci Rep. 9(1):1–12. doi:10.3390/w12113066.
  • Dong T. 2021. Nitrogen removal from groundwater using scoria: kinetics, equilibria and microstructure. J Environ Sci Health A Tox Hazard Subst Environ Eng. 56(4):386–393. doi:10.1080/10934529.2021.1883958.
  • Fallahzadeh RA, Miri M, Taghavi M, Gholizadeh A, Anbarani R, Hosseini-Bandegharaei A, Ferrante M, Oliveri Conti G. 2018. Spatial variation and probabilistic risk assessment of exposure to fluoride in drinking water. Food Chem Toxicol. 113:314–321. doi:10.1016/j.fct.2018.02.001.
  • Friedman JH. 2001. Greedy function approximation: a gradient boosting machine. Ann Stat. 29(5):1189–1232. doi:10.1214/aos/1013203451.
  • Friedman JH. 2002. Stochastic gradient boosting. Comput Stat Data Anal. 38(4):367–378. doi:10.1016/S0167-9473(01)00065-2.
  • Gao Y, Qian H, Zhou Y, Chen J, Wang H, Ren W, Qu W. 2022. Cumulative health risk assessment of multiple chemicals in groundwater based on deterministic and Monte Carlo models in a large semiarid basin. J Clean Prod [Internet]. 352(March):131567. doi:10.1016/j.jclepro.2022.131567.
  • Geological Survey 2011 2011. Geology and mineral resources of Manipur,Mizoram, Nagaland and Tripura. [place unknown].
  • Ghorbani MA, Salmasi F, Saggi MK, Bhatia AS, Kahya E, Norouzi R. 2020. Deep learning under H2O framework: A novel approach for quantitative analysis of discharge coefficient in sluice gates. J Hydroinform 22(6):1603–1619. doi:10.2166/hydro.2020.003.
  • Hossain M, Patra PK. 2020. Contamination zoning and health risk assessment of trace elements in groundwater through geostatistical modelling. Ecotoxicol Environ Saf. 189(vember 2019):110038. doi:10.1016/j.ecoenv.2019.110038.
  • Huang Y, Liu Y, Li C, Wang C. 2019. GBRTV is: online analysis of gradient boosting regression tree. J Visual 22:125–140. doi:10.1007/s12650-018-0514-2.
  • Jamshidi A, Morovati M, Golbini Mofrad MM, Panahandeh M, Soleimani H, Abdolahpour Alamdari H. 2021. Water quality evaluation and non-cariogenic risk assessment of exposure to nitrate in groundwater resources of Kamyaran, Iran: spatial distribution, Monte-Carlo simulation, and sensitivity analysis. J Environ Health Sci Eng. 19(1):1117–1131. doi:10.1007/s40201-021-00678-x.
  • Juntakut P, Snow DD, Haacker EMK, Ray C. 2019. November 2018. The long term effect of agricultural, vadose zone and climatic factors on nitrate contamination in the Nebraska’s groundwater system. J Contam Hydrol. 220:33–48. doi:10.1016/j.jconhyd.2018.11.007.
  • Karim Z, Qureshi BA. 2014. Health risk assessment of heavy metals in urban soil of Karachi, Pakistan. Hum Ecol Risk Assess. 20(3):658–667. doi:10.1080/10807039.2013.791535
  • Karunanidhi D, Aravinthasamy P, Subramani T, Roy PD, Srinivasamoorthy K. 2020. Risk of fluoride-rich groundwater on human health: remediation through managed aquifer recharge in a Hard Rock Terrain, South India. Nat Resour Res. 29(4):2369–2395. doi:10.1007/s11053-019-09592-4.
  • Kashi H, Emamgholizadeh S, Ghorbani H. 2014. Estimation of soil infiltration and cation exchange capacity based on multiple regression, ANN (RBF, MLP), and ANFIS models. Commun Soil Sci Plant Anal. 45(9):1195–1213. doi:10.1080/00103624.2013.874029
  • Kaur L, Rishi MS, Siddiqui AU. 2020. Deterministic and probabilistic health risk assessment techniques to evaluate non-carcinogenic human health risk (NHHR) due to fluoride and nitrate in groundwater of Panipat, Haryana, India. Environ Pollut. 259:113711. doi:10.1016/j.envpol.2019.113711.
  • Khan MSI, Islam N, Uddin J, Islam S, Nasir MK. 2022. Water quality prediction and classification based on principal component regression and gradient boosting classifier approach. J King Saud Univ-Comput Inform Sci. 34(8):4773–4781. doi:1016/j.jksuci.2021.06.003.
  • Knoll L, Breuer L, Bach M. 2019. Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning. Sci Total Environ. 668:1317–1327. doi:10.1016/j.scitotenv.2019.03.045.
  • Kouadri S, Pande CB, Panneerselvam B, Moharir KN, Elbeltagi A. 2022. Prediction of irrigation groundwater quality parameters using ANN, LSTM, and MLR models. Environ Sci Pollut Res. 29(14):21067–21091. doi:10.1007/s11356-021-17084-3.
  • Liang W, Luo S, Zhao G, Wu H. 2020. Predicting hard rock pillar stability using GBDT, XGBoost, and LightGBM algorithms. Mathematics 8(5):765. doi:10.3390/math8050765.
  • Li B, Deng C, Zhang D, Pan X, Al-Misned FA, Mortuza MG. 2016. Bioremediation of nitrate- and arsenic-contaminated groundwater using nitrate-dependent Fe(II) oxidizing clostridium sp. strain pxl2. Geomicrobiol J. 33(3-4):185–193. doi:10.1080/01490451.2015.1052117
  • Li D, Zhou Y, Long Q, Li R, Lu C. 2020. Ammonia nitrogen adsorption by different aquifer media: an experimental trial for nitrogen removal from groundwater. Hum Ecol Risk Assess [Internet]. 26(9):2434–2446. doi:10.1080/10807039.2020.1768361.
  • Li J, Heap AD. 2011. A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors. Ecol Inform [Internet]. 6(3-4):228–241. doi:10.1016/j.ecoinf.2010.12.003.
  • Liu L, Wu J, He S, Wang L. 2022. Occurrence and distribution of groundwater fluoride and manganese in the Weining Plain (China) and their probabilistic health risk quantification. Expo Health. 14(2):263–279. doi:10.1007/s12403-021-00434-4.
  • Liu X, Song Q, Tang Y, Li W, Xu J, Wu J, Wang F, Brookes PC. 2013. Human health risk assessment of heavy metals in soil-vegetable system: a multi-medium analysis. Sci Total Environ. 463-464:530–540. doi:10.1016/j.scitotenv.2013.06.064.
  • Lonati G, Zanoni F. 2012. Probabilistic health risk assessment of carcinogenic emissions from a MSW gasification plant. Environ Int. 44(1):80–91. doi:10.1016/j.envint.2012.01.013.
  • Lu H, Ma X. 2020. Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249:126169. doi:10.1016/j.chemosphere.2020:126169.
  • Ma Y, Egodawatta P, McGree J, Liu A, Goonetilleke A. 2016. Human health risk assessment of heavy metals in urban stormwater. Sci Total Environ. 557-558:764–772. doi:10.1016/j.scitotenv.2016.03.067.
  • Mallik S, Bhowmik T, Mishra U, Paul N. 2020. Mapping and prediction of soil organic carbon by an advanced geostatistical technique using remote sensing and terrain data. Geocarto Int. 37(8):2198–2214. doi:10.1080/10106049.2020.1815864
  • Mallik S, Bhowmik T, Mishra U, Paul N. 2021. Local scale groundwater vulnerability assessment with an improved DRASTIC model. Nat Resour Res. 30(3):2145–2160. doi:10.1007/s11053-021-09839-z.
  • Mallik S, Chakraborty A, Mishra U, Paul N. 2022. Prediction of irrigation water suitability using geospatial computing approach: a case study of Agartala city, India. Environ Sci Pollut Res. 1–16. doi:10.1007/s11356-022-21232-8.
  • Marghade D, Malpe DB, Duraisamy K, Patil PD, Li P. 2021. Hydrogeochemical evaluation, suitability, and health risk assessment of groundwater in the watershed of Godavari basin, Maharashtra, Central India. Environ Sci Pollut Res Int. 28(15):18471–18494. doi:10.1007/s11356-020-10032-7
  • Mohammed S, Al-Ebraheem A, Holb IJ, Alsafadi K, Dikkeh M, Pham QB, Linh NTT, Szabo S. 2020. Soil management effects on soil water erosion and runoff in central Syria—A comparative evaluation of general linear model and random forest regression. Water 12(9):2529. doi:10.3390/w12092529.
  • El Mountassir O, Bahir M, Ouazar D, Chehbouni A, Carreira PM. 2022. Temporal and spatial assessment of groundwater contamination with nitrate using nitrate pollution index (NPI), groundwater pollution index (GPI), and GIS (case study: Essaouira basin, Morocco). Environ Sci Pollut Res Int. 29(12):17132–17149. doi:10.1007/s11356-021-16922-8.
  • Muhammad S, Tahir Shah M, Khan S. 2010. Arsenic health risk assessment in drinking water and source apportionment using multivariate statistical techniques in Kohistan region, northern Pakistan. Food Chem Toxicol. 48(10):2855–2864. doi:10.1016/j.fct.2010.07.018.
  • Mukherjee I, Singh UK. 2021. Characterization of groundwater nitrate exposure using Monte Carlo and Sobol sensitivity approaches in the diverse aquifer systems of an agricultural semiarid region of Lower Ganga Basin, India. Sci Total Environ. 787:147657. doi:10.1016/j.scitotenv.2021.147657.
  • Nakagawa K, Amano H, Persson M, Berndtsson R. 2021. Spatiotemporal variation of nitrate concentrations in soil and groundwater of an intensely polluted agricultural area. Sci Rep. 11(1):1–13. doi:10.1038/s41598-021-82188-2.
  • Nasir N, Kansal A, Alshaltone O, Barneih F, Sameer M, Shanableh A, Al-Shamma'a A. 2022. Water quality classification using machine learning algorithms. J Water Process Eng. 48:102920. doi:10.1016/j.jwpe.2022.102920.
  • Natesan D, Sabarathinam C, Kamaraj P, Mathivanan M, Haji M, Mohan Viswanathan P, Chandrasekaran T, Rajendran T. 2022. Impact of monsoon shower on the hydrogeochemistry of groundwater along the lithological contact: a case study from South India. Appl Water Sci. 12(3):1–20. doi:10.1007/s13201-021-01538-7.
  • Nawale VP, Malpe DB, Marghade D, Yenkie R. 2021. Non-carcinogenic health risk assessment with source identification of nitrate and fluoride polluted groundwater of Wardha sub-basin, central India. Ecotoxicol Environ Saf. 208:111548. doi:10.1016/j.ecoenv.2020.111548.
  • Neshat A, Pradhan B, Javadi S. 2015. Risk assessment of groundwater pollution using Monte Carlo approach in an agricultural region: an example from Kerman Plain, Iran. Comput Environ Urban Syst [Internet]. 50:66–73. doi:10.1016/j.compenvurbsys.2014.11.004.
  • Pasupuleti S, Singha SS, Singha S, Kumar S, Singh R, Dhada I. 2022. Groundwater characterization and non-carcinogenic and carcinogenic health risk assessment of nitrate exposure in the Mahanadi River Basin of India. J Environ Manage. 319(June):115746. doi:10.1016/j.jenvman.2022.115746.
  • Pataca LCM, Pedrosa MAF, Zolnikov TR, Mol MPG. 2020. Water quality index and sanitary and socioeconomic indicators in Minas Gerais, Brazil. Environ Monit Assess. 192:1–12. doi:10.1007/s10661-020-08425-9
  • Patel N, Srivastav AL, Patel A, Singh A, Singh SK, Chaudhary VK, Singh PK, Bhunia B. 2022. Nitrate contamination in water resources, human health risks and its remediation through adsorption: a focused review. Environ Sci Pollut Res. 29(46):69137–69152. doi:10.1007/s11356-022-22377-2.
  • Pociene A, Pocius S. 2005. Relationship between nitrate amount in groundwater and natural factors. J Environ Eng Landsc Manag. 13(1):23–30. doi:10.3846/16486897.2005.9636842
  • Pourghasemi HR, Sadhasivam N, Yousefi S, Tavangar S, Ghaffari Nazarlou H, Santosh M. 2020. Using machine learning algorithms to map the groundwater recharge potential zones. J Environ Manage. 265(April):110525. doi:10.1016/j.jenvman.2020.110525.
  • Rahman A, Mondal NC, Tiwari KK. 2021. Anthropogenic nitrate in groundwater and its health risks in the view of background concentration in a semi arid area of Rajasthan, India. Sci Rep. 11(1):1–13. doi:10.1038/s41598-021-88600-1.
  • Rahman MM, Bodrud-Doza M, Siddiqua MT, Zahid A, Islam ARMT. 2020. Spatiotemporal distribution of fluoride in drinking water and associated probabilistic human health risk appraisal in the coastal region, Bangladesh. Sci Total Environ. 724:138316. doi:10.1016/j.scitotenv.2020.138316
  • Raja V, Lakshmi RV, Sekar CP, Chidambaram S, Neelakantan MA. 2021. Health risk assessment of heavy metals in groundwater of industrial township Virudhunagar, Tamil Nadu, India. Arch Environ Contam Toxicol. 80(1):144–163. doi:10.1007/s00244-020-00795-y.
  • Rong G, Alu S, Li K, Su Y, Zhang J, Zhang Y, Li T. 2020. Rainfall induced landslide susceptibility mapping based on Bayesian optimized random forest and gradient boosting decision tree models—A case study of Shuicheng County, China. Water 12(11):3066. doi:10.3390/w12113066.
  • Rostami AA, Karimi V, Khatibi R, Pradhan B. 2020. An investigation into seasonal variations of groundwater nitrate by spatial modelling strategies at two levels by kriging and co-kriging models. J Environ Manage. 270: 110843. doi:10.1016/j.jenvman.2020.110843
  • Ruidas D, Pal SC, Towfiqul Islam ARM, Saha A. 2023. Hydrogeochemical evaluation of groundwater aquifers and associated health hazard risk mapping using ensemble data driven model in a Water Scares Plateau Region of Eastern India. Expo Health. 15(1):113–131. doi:10.1007/s12403-022-00480-6.
  • Safonov AV, Babich TL, Sokolova DS, Grouzdev DS, Tourova TP, Poltaraus AB, Zakharova EV, Merkel AY, Novikov AP, Nazina TN. 2018. Microbial community and in situ bioremediation of groundwater by nitrate removal in the zone of a radioactive waste surface repository. Front Microbiol. 9(AUG):1–17.
  • Sajedi-Hosseini F, Malekian A, Choubin B, Rahmati O, Cipullo S, Coulon F, Pradhan B. 2018. A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination. Sci Total Environ. 644:954–962. doi:10.1016/j.scitotenv.2018.07.054.
  • Shahriar SA, Kayes I, Hasan K, Salam MA, Chowdhury S. 2020. Applicability of machine learning in modeling of atmospheric particle pollution in Bangladesh. Air Qual Atmos Heal. (Sportisse 2007).
  • Talukdar S, Singha P, Mahato S, Shahfahad Pal S, Liou YA, Rahman A. 2020. Land-use land-cover classification by machine learning classifiers for satellite observations-a review. Remote Sens. 12(7):1135. doi:10.3390/rs12071135
  • Taşan S, Demir Y. 2020. Comparative analysis of MLR, ANN, and ANFIS models for prediction of field capacity and permanent wilting point for Bafra Plain Soils. Commun Soil Sci Plant Anal [Internet]. 51(5):604–621. doi:10.1080/00103624.2020.1729374.
  • USEPA 1989. Risk-assessment guidance for superfund. Volume 1. Human health evaluation manual. Part A. Interim report (Final). [place unknown]: US Environmental Protection Agency, Washington, DC.
  • Varouchakis EA, Hristopulos DT. 2013. Comparison of stochastic and deterministic methods for mapping groundwater level spatial variability in sparsely monitored basins. Environ Monit Assess. 185(1):1–19. doi:10.1007/s10661-012-2527-y
  • Vlachou C, Hofstädter D, Rauscher-Gabernig E, Griesbacher A, Fuchs K, König J. 2020. Probabilistic risk assessment of nitrates for Austrian adults and estimation of the magnitude of their conversion into nitrites. Food Chem Toxicol. 145:111719. doi:10.1016/j.fct.2020.111719
  • Walczak S, Cerpa N. 1999. Heuristic principles for the design of artificial neural networks. Inform Software Technol 41(2):107–117. doi:10.1016/S0950-5849(98)00116-5.
  • Wang L, Mei Y, Yu K, Li Y, Meng X, Hu F. 2019. Anthropogenic effects on hydrogeochemical characterization of the Shallow Groundwater in an arid irrigated plain in Northwestern China. Water (Switzerland). 11(11):2247. doi:10.3390/w11112247.
  • Wu J, Bian J, Wan H, Ma Y, Sun X. 2021. Health risk assessment of groundwater nitrogen pollution in Songnen Plain. Ecotoxicol Environ Saf. 207(August 2020):111245. doi:10.1016/j.ecoenv.2020.111245.
  • Yang Q, Li Z, Lu X, Duan Q, Huang L, Bi J. 2018. A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment. Sci Total Environ. 642:690–700. doi:10.1016/j.scitotenv.2018.06.068.
  • Yang Y, Zhang R, Zhang F, Li Y. 2022. Spatial–temporal variation and health risk assessment of fluoride in surface water in the Tibetan Plateau. Expo Heal [Internet]. :0123456789. doi:10.1007/s12403-022-00490-4.
  • Yildiz B, Bilbao JI, Sproul AB. 2017. A review and analysis of regression and machine learning models on commercial building electricity load forecasting. Renew Sustain Energy Rev [Internet]. 73(March 2016):1104–1122. doi:10.1016/j.rser.2017.02.023.
  • Zhang L, Huang D, Yang J, Wei X, Qin J, Ou S, Zhang Z, Zou Y. 2017. Probabilistic risk assessment of Chinese residents’ exposure to fluoride in improved drinking water in endemic fluorosis areas. Environ Pollut. 222:118–125. doi:10.1016/j.envpol.2016.12.074.
  • Zhang Q, Xu P, Qian H. 2019. Assessment of groundwater quality and human health risk (HHR) evaluation of nitrate in the central-western Guanzhong basin, China. Int J Environ Res Public Health. 16(21).
  • Zhang T, Su J, Liu C, Chen WH, Liu H, Liu G. 2017. Band selection in sentinel-2 satellite for agriculture applications. ICAC 2017 - 2017 23rd IEEE Int Conf Autom Comput Addressing Glob Challenges through Autom Comput.(August), 1–6. doi:10.23919/IConAC.2017.8081990
  • Zhang Y, Li F, Zhang Q, Li J, Liu Q. 2014. Tracing nitrate pollution sources and transformation in surface- and ground-waters using environmental isotopes. Sci Total Environ. 490:213–222. doi:10.1016/j.scitotenv.2014.05.004.
  • Zhang Y, Wu J, Xu B. 2018. Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environ Earth Sci. 77(7):1–12. doi:10.1007/s12665-018-7456-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.