230
Views
2
CrossRef citations to date
0
Altmetric
Articles

Analysis of microalgal growth kinetic model and carbohydrate biosynthesis cultivated using agro-industrial waste residuals as carbon source

, &
Pages 514-524 | Published online: 28 Aug 2021
 

Abstract

Microalgal carbohydrate is considered one of the potential feedstock for biofuel produced via the bioconversion process. However, the current cultivation process using commercial medium exhibited low biomass production and its carbohydrate productivity which become a bottleneck for sustainable microalgal-carbohydrate-based biofuel production. Thus, the objective of this study is to assess the utilization of industrial waste including molasses and glycerol on the Halochlorella rubescens and Tetraselmis suecica growth as well as its carbohydrate content under different cultivation modes such as autotrophic, heterotrophic and photoheterotrophic conditions. From this study, the highest maximum biomass of H. rubenscens and T. suecica of 0.653 ± 0.009 and 0.669 ± 0.01gL−1 were obtained when the cultivation was performed under photoheterotrophic using molasses. High carbohydrate content of H. rubescens and T. seucica of 56.81 ± 0.39% and 71.52 ± 0.03% with glucose represent the dominant sugar was observed under this condition. The growth kinetic model of the analysis indicated that Huang and Gompertz Models described well the growth of H. rubescens and T. suecica under photoheteroptroph condition with a high significant R2 of 0.99. The information generated could be beneficial for the future development of low-cost microalgal cultivation media formulation for future microalgal carbohydrate-based products such as bioethanol.

Graphical Abstract

Acknowledgement

The author would like to thank School of Industrial Technology, Universiti Sains Malaysia (USM) and Ministry of Higher Education for the research support. The author also would like to acknowledge the technical support from Ramizah Kamaludin in the research.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 604.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.