230
Views
2
CrossRef citations to date
0
Altmetric
Articles

Analysis of microalgal growth kinetic model and carbohydrate biosynthesis cultivated using agro-industrial waste residuals as carbon source

, &

Reference

  • Khan, M. I.; Shin, J. H.; Kim, J. D. The Promising Future of Microalgae: Current Status, Challenges, and Optimization of a Sustainable and Renewable Industry for Biofuels, Feed, and Other Products. Microb. Cell Factories. 2018, 17, 36.
  • Benemann, J. Microalgae for Biofuels and Animal Feeds. Energies. 2013, 6, 5869–5886. DOI: https://doi.org/10.3390/en6115869.
  • Cruz, Y. R.; Aranda, D. A. G.; Seidl, P. R.; Diaz, G. C.; Carliz, R. G.; Fortes, M. M.; da Ponte, D. A. M. P.; de Paula, R. C. V. Cultivation Systems of Microalgae for the Production of Biofuels, In Biofuels – State of Development. Ed: Krzysztof Biernat. IntechOpen, 2018, 119–218. DOI: https://doi.org/10.5772/intechopen.74957.
  • Jerez-Mogollón, S. J.; Rueda-Quinonez, L. V.; Alfonso-Velazco, L. Y.; Barajas-Solano, A. F.; Barajas-Ferreira, C.; Kafaroz, V. Improvement of Lab Scale Production of Microalgal Carbohydrate for Biofuel Production. CT&F Cienc. Tecnol. Futuro. 2012, 5, 103–116. DOI: https://doi.org/10.29047/01225383.209.
  • Sherif, H. H.; Abdel-Hameed, M. S.; Hammouda, O. E.; Ghazal, F. M.; Hamed, S. M. Effect of Different Growth Conditions on Certain Biochemical Parameters of Different Cyanobacterial Strains. Malays. J. Microbiol. 2012, 8, 265–271.
  • Magierek, E.; Krzemińska, I. Effect of Stress Conditions on Improvement of Lipid and Carbohydrate Accumulation under Photoautotrophic Cultivation of Chlorophyta. Phycol. Rev. 2018, 57, 601–608. DOI: https://doi.org/10.2216/17-84.1.
  • Cheng, D.; Li, D.; Yuan, Y.; Zhou, L.; Wu, T.; Wang, L.; Zhao, Q.; Wei, W.; Sun, S. Improving Carbohydrate and Starch Accumulation in Chlorella sp. AE10 by a Novel Two-Stage Process with Cell Dilution. Biotechnol. Biofuels. 2017, 10, 1–14.
  • Menegol, T.; Andressa Bacalau, D.; Eliseu, R.; Rosane, R. Effect of Temperature and Nitrogen Concentration on Biomass Composition of Heterochlorella luteoviridis. Food Sci. Technol. 2017, 37, 28–37. DOI: https://doi.org/10.1590/1678-457x.13417.
  • Panahi, Y.; Yari Khosroushahi, A.; Sahebkar, A.; Heidari, H. R. Impact of Cultivation Condition and Media Content on Chlorella vulgaris Composition. Adv. Pharm. Bull. 2019, 9, 182–194. DOI: https://doi.org/10.15171/apb.2019.022.
  • Morales, M.; Sánchez, L.; Revah, S. The Impact of Environmental Factors on Carbon Dioxide Fixation by Microalgae. FEMS Microbiol. Lett. 2017, 365, 1–11
  • Gatamaneni, B. L.; Orsat, V.; Lefsrud, M. Factors Affecting Growth of Various Microalgal Species. Environ. Eng. Sci. 2018, 35, 1037–1048. DOI: https://doi.org/10.1089/ees.2017.0521.
  • Andrade, M. R.; Costa, J. A. V. Mixotrophic Cultivation of Microalga Spirulina Platensis Using Molasses as Organic Substrate. Aquaculture. 2007, 264, 130–134. DOI: https://doi.org/10.1016/j.aquaculture.2006.11.021.
  • Ferreira, S. P.; Holz, J. C. P.; Costa, J. A. V. Influence on Cultivation Conditions in the Heterotrophic Lipid Production of the Microalga Chlorella Minutissima. Int. Food Res. J. 2018, 25, 408–417.
  • Kamalanathan, M.; Chaisutyakorn, P.; Gleadow, R.; Beardall, J. A Comparison of Photoautotrophic, Heterotrophic, and Mixotrophic Growth for Biomass Production by the Green Alga Scenedesmus sp. (Chlorophyceae). Phycologia. 2018, 57, 309–317. DOI: https://doi.org/10.2216/17-82.1.
  • Wei-Bao, K.; Yang, H.; Yun-Tao, C.; Song, H.; Shao-Feng, H.; Chun-Gu, X. Effect of Glycerol and Glucose on the Enhancement of Biomass, Lipid and Soluble Carbohydrate Production by Chlorella vulgaris in Mixotrophic Culture. Food Technol. Biotechnol. 2013, 51, 62–69.
  • Ghosh, A.; Sarkar, S.; Gayen, K.; Bhowmick, T. K. Effects of Carbon, Nitrogen, and Phosphorus Supplements on Growth and Biochemical Composition of Podohedriella sp. (MCC44) Isolated from Northeast India. Environ. Prog. Sustain. Energy. 2019, 39, e13378.
  • Annamaria, D.; Vidotti, S. Miniaturized Culture for Heterotrophic Microalgae Using Low Cost Carbon Sources as a Tool to Isolate Fast and Economical Strains. Chem. Eng. Trans. 2014, 38, 325–330.
  • Kamyab, H.; Din, M. F. M.; Ghoshal, S. K.; Lee, C. T.; Keyvanfar, A.; Bavafa, A. A.; Rezania, S.; Lim, J. S. Chlorella pyrenoidosa Mediated Lipid Production Using Malaysian Agricultural Wastewater: Effects of Photon and Carbon. Waste Biomass Valor. 2016, 7, 779–710. DOI: https://doi.org/10.1007/s12649-016-9556-7.
  • Kamyab, H.; Din, M. F. M.; Ponraj, M.; Keyvanfar, A.; Rezania, S.; Taib, S. M.; Majid, M. Z. A. Isolation and Screening of Microalgae from Agro-Industrial Aastewater (POME) for Biomass and Biodiesel Sources. Desalination Water Treat. 2016, 57, 29118–29125. DOI: https://doi.org/10.1080/19443994.2016.1139101.
  • Sen, K. Y.; Hussin, M. H.; Baidurah, S. Biosynthesis of Poly(3-Hydroxybutyrate) (PHB) by Cupriavidus necator from Various Pretreated Molasses as Carbon Source. Biocatal. Agric. Biotechnol. 2019, 17, 51–59. DOI: https://doi.org/10.1016/j.bcab.2018.11.006.
  • Sipaúba-Tavares, L.; Tedesque, M.; Scardoeli-Truzzi, B. Evaluation of the Effects of Sugarcane Molasses as a Carbon Source for Ankistrodesmus gracilis and Haematococcus pluvialis (Chlorophyceae). Braz. J. Biol. 2019, 80(3), 594–600.
  • Mohammad Mirzaie, M. A.; Kalbasi, M.; Mousavi, S. M.; Ghobadian, B. Investigation of Mixotrophic, Heterotrophic, and Autotrophic Growth of Chlorella vulgaris under Agricultural Waste Medium. Prep. Biochem. Biotechnol. 2016, 46, 150–156. DOI: https://doi.org/10.1080/10826068.2014.995812.
  • Yang, J.; Rasa, E.; Tantayotai, P.; Scow, K. M.; HongLi, Y.; Hristova, K. R. Mathematical Model of Chlorella minutissima UTEX2341 Growth and Lipid Production under Photoheterotrophic Fermentation Conditions. Bioresour. Technol. 2011, 102, 3077–3082. DOI: https://doi.org/10.1016/j.biortech.2010.10.049.
  • Chi, Z.; Pyle, D.; Wen, Z.; Frear, C.; Chen, S. A Laboratory Study of Producing Docosahexaenoic Acid from Biodiesel-Waste Glycerol by Microalgal Fermentation. Process Biochem. 2007, 42, 1537–1545. DOI: https://doi.org/10.1016/j.procbio.2007.08.008.
  • Leite, G. B.; Paranjape, K.; Abdelaziz, A. E. M.; Hallenbeck, P. C. Utilization of Biodiesel-Derived Glycerol or Xylose for Increased Growth and Lipid Production by Indigenous Microalgae. Bioresour. Technol. 2015, 184, 123–130. DOI: https://doi.org/10.1016/j.biortech.2014.10.117.
  • Kassim, M. A.; Kirtania, K.; Cruz, D. D. L.; Cura, N.; Srivatsa, S. C.; Bhattacharya, S. Thermogravimetric Analysis and Kinetic Characterization of Lipid-Extracted Tetraselmis suecica and Chlorella sp. Algal Res. 2014, 6, 39–45. DOI: https://doi.org/10.1016/j.algal.2014.08.010.
  • Abedini Najafabadi, H.; Malekzadeh, M.; Jalilian, F.; Vossoughi, M.; Pazuki, G. Effect of Various Carbon Sources on Biomass and Lipid Production of Chlorella vulgaris during Nutrient Sufficient and Nitrogen Starvation Conditions. Bioresour. Technol. 2015, 180, 311–317. DOI: https://doi.org/10.1016/j.biortech.2014.12.076.
  • Lam, M. K.; Lee, K. T. Effect of Carbon Source Towards the Growth of Chlorella vulgaris for CO2 Bio-Mitigation and Biodiesel Production. Int. J. Greenh. Gas Control. 2013, 14, 169–176. DOI: https://doi.org/10.1016/j.ijggc.2013.01.016.
  • Innocent, O. O.; Ogbonna, J. C. Effects of Carbon Source on Growth Characteristics and Lipid Accumulation by Microalga Dictyosphaerium sp. with Potential for Biodiesel Production. Energ. Power Eng. 2018, 10, 29–42.
  • Hu, H.; Gao, K. Optimization of Growth and Fatty Acid Composition of a Unicellular Marine Picoplankton, Nannochloropsis sp., with Enriched Carbon Sources. Biotechnol. Lett. 2003, 25, 421–425. DOI: https://doi.org/10.1023/a:1022489108980.
  • Shen, Q. H.; Jia-Wei, J.; Li-Ping, C.; Li-Hua, C.; Xin-Hua, X.; Huan-Lin, C. Effect of Carbon Source on Biomass Growth and Nutrients Removal of Scenedesmus obliquus for Wastewater Advanced Treatment and Lipid Production. Bioresour. Technol. 2015, 190, 257–263. DOI: https://doi.org/10.1016/j.biortech.2015.04.053.
  • Chojnacka, K.; Facundo-Joaquin, M. R. Kinetic and Stoichiometric Relationships of the Energy and Carbon Metabolism in the Culture of Microalgae. Biotechnology. 2004, 3, 21–34.
  • Sharma, A. K.; Sahoo, P. K.; Singhal, S.; Patel, A. Impact of Various Media and Organic Carbon Sources on Biofuel Production Potential from Chlorella spp. 3 Biotech. 2016, 6, 116. DOI: https://doi.org/10.1007/s13205-016-0434-6.
  • Choi, H. J.; Yu, S. W. Influence of Crude Glycerol on the Biomass and Lipid Content of Microalgae. Biotechnol. Biotechnol. Equip. 2015, 29, 506–513. DOI: https://doi.org/10.1080/13102818.2015.1013988.
  • Piasecka, A.; Nawrocka, A.; Wiacek, D.; Krzeminska, I. Agro-Industrial by-Product in Photoheterotrophic and Mixotrophic Culture of Tetradesmus Obliquus: Production of ω3 and ω6 Essential Fatty Acids with Biotechnological Importance. Sci. Rep. 2020, 10, 6411.
  • Piasecka, A.; Krzemińska, I.; Tys, J. Enrichment of Parachlorella kessleri Biomass with Bioproducts: Oil and Protein by Utilization of Beet Molasses. J. Appl. Phycol. 2017, 29, 1735–1743. DOI: https://doi.org/10.1007/s10811-017-1081-y.
  • El-Sheekh, M. M.; Bedaiwy, M. Y.; Osman, M. E.; Ismail, M. M. Influence of Molasses on Growth, Biochemical Composition and Ethanol Production of the Green Algae Chlorella vulgaris and Scenedesmus obliquus. J. Agric. Eng. Biotechnol. 2014, 2, 20–28.
  • Velu, P.; Peter, M. J.; Sanniyasi, E. Effect of Various Carbon Sources on Biochemical Production in Marine Microalgae Nannochloropsis salina (Eustigmatophyceae), Dunaliella tertiolecta (Chlorophyceae) and Tetraselmis suecica (Chlorodendrophyceae). Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 207–215.
  • Kassim, M. A.; Rashid, M. R.; Halim, R. Towards Biorefinery Production of Microalgal Biofuels and Bioproducts- Production of Acetic Acid from the Fermentation of Chlorella sp. and Tetraselmis suecica Hydrolysates. GSC. 2017, 07, 152–171. DOI: https://doi.org/10.4236/gsc.2017.72012.
  • Oliveira, O.; Gianesella, S.; Silva, V.; Mata, T.; Caetano, N. Lipid and Carbohydrate Profile of a Microalga Isolated from Wastewater. Energy Procedia. 2017, 136, 468–473. DOI: https://doi.org/10.1016/j.egypro.2017.10.305.
  • Azmi, A. S.; Che Aziz, N. A.; Mohamad Puad, N. I.; Halim, A. A.; Yusof, F.; Yusup, S. Chlorella vulgaris Logistic Growth Kinetics Model in High Concentrations of Aqueous Ammonia. IIUMEJ. 2018, 19, 1–9. DOI: https://doi.org/10.31436/iiumej.v19i2.893.
  • Lam, M. K.; Yusoff, M. I.; Uemura, Y.; Lim, J. W.; Khoo, C. G.; Lee, L. T.; Ong, H. C. Cultivation of Chlorella vulgaris Using Nutrients Source from Domestic Wastewater for Biodiesel Production: Growth Condition and Kinetic Studies. Renew. Energy. 2017, 103, 197–207. DOI: https://doi.org/10.1016/j.renene.2016.11.032.
  • Praveen, K.; Abinandan, S.; Natarajan, R.; Kavitha, M. S. Biochemical Response from Biomas of Isolated Chlorella sp., under Different Cultivation Modes: Non-Linear Modelling of Growth Kinetics. Braz. J. Chem. Eng. 2018, 35, 489–496. DOI: https://doi.org/10.1590/0104-6632.20180352s20170188.
  • Halmi, M. I. E.; Shukor, M. S.; Johari, W. L. W.; Shukor, M. Y. Evaluation of Several Mathematical Models for Fitting the Growth of the Algae Dunaliella tertiolecta. Asian J. Plant Biol. 2014, 2, 1–6.
  • Lam, M. K.; Lee, K. T.; Khoo, C. G.; Uemura, Y. Growth Kinetic Study of Chlorella vulgaris Using Lab Scale and Pilot Scale Photobioreactor: Effect of CO2 Concentration. J. Eng. Sci. Technol. 2016, 11, 73–87.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.