223
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Elucidating spray-dried dispersion dissolution mechanisms with focused beam reflectance measurement: contribution of polymer chemistry and particle properties to performance

ORCID Icon, , &
Pages 1055-1062 | Received 16 Feb 2018, Accepted 11 Dec 2018, Published online: 26 Jun 2019
 

Abstract

Amorphous spray-dried dispersions (SDDs) are a key enabling technology for oral solid dosage formulations, used to improve dissolution behaviour and clinical exposure of poorly soluble active pharmaceutical ingredients (APIs). Appropriate assessment of amorphous dissolution mechanisms is an ongoing challenge. Here we outline the novel application using focused beam reflectance measurement (FBRM) to analyse particle populations orthogonal to USP 2 dissolution. The relative impact of polymer substitution and particle attributes on 25% BMS-708163/HPMC-AS SDD dissolution was assessed. Dissolution mechanisms for SDDs were categorized into erosion versus disintegration. Beyond an initial mixing period, FBRM particle counts diminish slowly and particles are detectable until the point where API dissolution is complete. There is correlation between FBRM particle count decay rate, representing loss of SDD particles in the dissolution media, and UV dissolution rate, measuring dissolved API. For the SDD formulation examined, the degree of succinoyl substitution for HPMC-AS, SDD particle size and surface area all had an impact on dissolution. These data indicate the SDD displayed an erosion mechanism and that FBRM is capturing a rate-limiting step. From this screening tool, the mechanistic understanding and measured impact of polymer chemistry and particle properties can inform a risk-assessment and control strategy for this compound.

Acknowledgements

The authors would like to acknowledge the assistance of Shin Etsu, Japan, in providing non-commercial specialist laboratory-scale samples of HPMC-AS and Bend Research, USA, in manufacturing SDD samples.

Disclosure statement

No potential conflict of interest is reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.