50
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Nano-crystallization of flubendazole for enhanced dissolution rate and improved in vivo efficacy against Trichinella spiralis

, ORCID Icon, , , &
Pages 571-583 | Received 17 Feb 2023, Accepted 06 Jun 2023, Published online: 15 Jun 2023
 

Abstract

The aim was to enhance the dissolution rate and in vivo efficacy of flubendazole against trichinella spiralis. Flubendazole nanocrystals were developed by controlled anti-solvent recrystallization. Saturated flubendazole solution was prepared in DMSO. This was injected into phosphate buffer (pH 7.4) containing Aerosil 200, Poloxamer 407 or sodium lauryl sulphate (SLS) while mixing using paddle mixer. The developed crystals were separated from DMSO/aqueous system by centrifugation. The crystals were characterized using DSC, X-ray diffraction and electron microscopy. The crystals were suspended in Poloxamer 407 solution and dissolution rate was monitored. Optimal formulation was administered to Trichinella spiralis infected mice. Administration protocol attacked the parasite in intestinal, migrating and encysted phases. The crystals were spherical nanosized with formulation employing 0.2% Poloxamer 407 as stabilizer being optimum with size of 743.1 nm. DSC and X-ray supported particle size reduction with partial amorphization. Optimal formulation showed fast dissolution to deliver 83.1% after 5 min. Nanocrystals provided complete eradication of intestinal Trichinella and reduced larval count by 90.27 and 85.76% in migrating and encysted phases compared with marginal effect in case of unprocessed flubendazole. The efficacy was clearer from improved histopathological features of the muscles. The study introduced nano-crystallization for enhanced dissolution and in vivo efficacy of flubendazole.

Disclosure statement

The authors affirm that they have no known financial or interpersonal conflicts that would have appeared to have an impact on the current work. No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.