70
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Green polymer altered in-situ gel oral liquid sustainable release preparation of vildagliptin suitable for dysphagic diabetic patients: assessment in-vitro & in-vivo

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 585-594 | Received 17 Feb 2023, Accepted 06 Jun 2023, Published online: 21 Jun 2023
 

Abstract

Purpose

This work aimed to fabricate alginate based in-situ gelling matrix of vildagliptin improved by calcium and carboxy methyl cellulose (CMC) for appropriate adjustment of the onset and duration of action. This easy-to-swallow thickened liquid preparation aimed to improve compliance for dysphagic or elderly diabetic patients.

Methods

Vildagliptin dispersions containing alginate were fabricated in the presence or absence of calcium chloride to assess the effect of calcium ion, then a matrix containing 1.5% w/v of sodium alginate with calcium was further examined after the addition of CMC with different concentrations ranging from 0.1% to 0.3%. The viscosity, gelling forming property, Differential scanning calorimetry, and in-vitro drug release were assessed before monitoring the hypoglycemic effect of the selected formulation.

Results

In-situ gel matrixes were fabricated at gastric pH with and without calcium ions. The best formula concerning viscosity and the gel-forming property was achieved with higher CMC concentrations, which in turn decreased the rate of vildagliptin release in stimulated gastric pH. In-vivo results confirmed the extended hypoglycemic effect of the vildagliptin in-situ gelling matrix compared to the vildagliptin aqueous solution.

Conclusion

This study represents a green polymeric-based in-situ gel as a liquid oral retarded release preparation intended for reducing dose frequency, easier administration of vildagliptin, and improving compliance in geriatric and dysphagic diabetic patients.

Acknowledgments

The authors are grateful to Sigma Pharmaceutical Industries (S.P.I). for the thoughtful gift of Vildagliptin, and Sodium alginate.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.