107
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Optimizing formulation parameters for the development of carvedilol injectable in situ forming depots

, &
Pages 865-876 | Received 02 Jun 2023, Accepted 03 Oct 2023, Published online: 10 Oct 2023
 

Abstract

In situ forming depots (ISFDs) represent attractive alternatives to the conventional sustained drug delivery systems. Carvedilol, a short half-life drug used on a daily basis to manage chronic conditions, could benefit from this technology. The aim of this work was to develop, for the first time, a new injectable long-acting carvedilol-ISFD. Accordingly, 4 different grades of polyesters with varying properties as i) lactide-to glycolide ratio (polylactide-co-glycolide (PLGA) vs. polylactide (PLA)), and ii) end functionality (acid- vs. ester-capped) were utilized for the preparation of ISFD formulations. In addition, 4 different organic solvents with varying properties (i.e. N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), ethyl acetate, and benzyl benzoate) were also investigated. It was found that NMP and DMSO were more suitable for the formation of depots. Furthermore, all ISFD formulations demonstrated excellent encapsulation efficiency (i.e. 96–98%). Interestingly, both PLGA-based ISFDs (acid-capped and ester-capped) exhibited similar release behaviors and were able to extend carvedilol release over 30 days. On the other hand, acid-capped and ester-capped PLA-based ISFDs exhibited slower release over the 30 days with an average release of only 36% and 60%, respectively. In conclusion, the developed carvedilol-ISFDs resulted in a tunable extended-release behavior, simply by choosing the appropriate grade of polymer. These results open the door toward a novel injectable carvedilol-ISFD formulation.

Graphical Abstract

Acknowledgment

The authors thank the University of Jordan for the financial support.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The authors thank the University of Jordan for the financial support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.