107
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Optimizing formulation parameters for the development of carvedilol injectable in situ forming depots

, &
Pages 865-876 | Received 02 Jun 2023, Accepted 03 Oct 2023, Published online: 10 Oct 2023

References

  • Abdelbary AA, Al-Mahallawi AM, Abdelrahim ME, Ali AMA. 2015. Preparation, optimization, and in vitro simulated inhalation delivery of carvedilol nanoparticles loaded on a coarse carrier intended for pulmonary administration. Int J Nanomedicine. 10:6339–6353. doi:10.2147/IJN.S91631.
  • Abulateefeh SR. 2023. Long-acting injectable PLGA/PLA depots for leuprolide acetate: successful translation from bench to clinic. Drug Deliv Transl Res. 13(2):520–530. doi:10.1007/s13346-022-01228-0.
  • Ahmed TA, Ibrahim HM, Samy AM, Kaseem A, Nutan MTH, Hussain MD. 2014. Biodegradable Injectable in situ implants and microparticles for sustained release of Montelukast: in vitro release, pharmacokinetics, and stability. AAPS PharmSciTech. 15(3):772–780. doi:10.1208/s12249-014-0101-3.
  • Al-Tahami K, Meyer A, Singh J. 2006. Poly lactic acid based injectable delivery systems for controlled release of a model protein, lysozyme. Pharm Dev Technol. 11(1):79–86. doi:10.1080/10837450500464040.
  • Amini-Fazl MS. 2022. Biodegradation study of PLGA as an injectable in situ depot-forming implant for controlled release of paclitaxel. Polym Bull. 79(5):2763–2776. doi:10.1007/s00289-020-03347-5.
  • Assali M, Zaid AN, Bani-Odeh M, Faroun M, Muzaffar R, Sawalha H. 2017. Preparation and characterization of carvedilol-loaded poly(D, L) lactide nanoparticles/microparticles as a sustained-release system. Int J Polym Mater Polym Biomater. 66(14):717–725. doi:10.1080/00914037.2016.1263951.
  • Aulton ME. 2001. Pharmaceutics : the science of dosage form design. Edinburgh: Churchill Livingstone.
  • Avachat AM, Kapure SS. 2014. Asenapine maleate in situ forming biodegradable implant: an approach to enhance bioavailability. Int J Pharm. 477(1-2):64–72. doi:10.1016/j.ijpharm.2014.10.006.
  • Brodbeck KJ, DesNoyer JR, McHugh AJ. 1999. Phase inversion dynamics of PLGA solutions related to drug delivery. J Control Release. 62(3):333–344. doi:10.1016/S0168-3659(99)00159-5.
  • Camargo JA, Sapin A, Nouvel C, Daloz D, Leonard M, Bonneaux F, Six J-L, Maincent P. 2013. Injectable PLA-based in situ forming implants for controlled release of Ivermectin a BCS Class II drug: solvent selection based on physico-chemical characterization. Drug Dev Ind Pharm. 39(1):146–155. doi:10.3109/03639045.2012.660952.
  • Castro KCd, Costa JM, Campos MGN. 2022. Drug-loaded polymeric nanoparticles: a review. Int J Polym Mater Polym Biomater. 71(1):1–13. doi:10.1080/00914037.2020.1798436.
  • Chen W, Lamey K, Oh C, inventors; Lamey Kimberly A, assignee. 2006 May 4. Carvedilol pharmasolve solvate. United States patent application US 10/513,234.
  • Chhabra S, Sachdeva V, Singh S. 2007. Influence of end groups on in vitro release and biological activity of lysozyme from a phase-sensitive smart polymer-based in situ gel forming controlled release drug delivery system. Int J Pharm. 342(1–2):72–77. doi:10.1016/j.ijpharm.2007.04.034.
  • Dhawan S, Kapil R, Kapoor DN. 2011. Development and evaluation of in situ gel-forming system for sustained delivery of insulin. J Biomater Appl. 25(7):699–720. doi:10.1177/0885328209359959.
  • Dunn RL, English JP, Cowsar DR, Vanderbilt DP, inventors; Atrix Laboratories Inc, assignee. 1990 Jul 3. Biodegradable in-situ forming implants and methods of producing the same. United States patent US 4,938,763.
  • FDA. 2003. Food and Drug Administration, Coreg® Approved Labeling [Internet]. [accessed 2022 Nov 7]. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2003/20-297S009_Coreg_prntlbl.pdf.
  • Felton LA. 2013. Mechanisms of polymeric film formation. Int J Pharm. 457(2):423–427. doi:10.1016/j.ijpharm.2012.12.027.
  • Hamed R, Awadallah A, Sunoqrot S, Tarawneh O, Nazzal S, AlBaraghthi T, Al Sayyad J, Abbas A. 2016. pH-dependent solubility and dissolution behavior of carvedilol—case example of a weakly basic BCS class II Drug. AAPS PharmSciTech. 17(2):418–426. doi:10.1208/s12249-015-0365-2.
  • Hansen CM. 2007. Hansen Solubility Parameters. Boca Raton: CRC Press. doi:10.1201/9781420006834.
  • Ibrahim TM, El-Megrab NA, El-Nahas HM. 2021. An overview of PLGA in-situ forming implants based on solvent exchange technique: effect of formulation components and characterization. Pharm Dev Technol. 26(7):709–728. doi:10.1080/10837450.2021.1944207.
  • Jantzen GM, Robinson JR. 2002. Sustained-and controlled-release drug delivery systems. In: Banker GS, Siepmann J, Rhodes C, editors. Modern Pharmaceutics. Vol. 121. 4th ed. New York: MARCEL DEKKER AG; p. 501–528. doi:10.1201/9780824744694.
  • Jouyban A, Fakhree MAA, Shayanfar A. 2010. Review of pharmaceutical applications of N-Methyl-2-Pyrrolidone. J Pharm Pharm Sci. 13(4):524–535. doi:10.18433/J3P306.
  • Kamaly N, Yameen B, Wu J, Farokhzad OC. 2016. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 116(4):2602–2663. doi:10.1021/acs.chemrev.5b00346.
  • Kapoor DN, Katare OP, Dhawan S. 2012. In situ forming implant for controlled delivery of an anti-HIV fusion inhibitor. Int J Pharm. 426(1–2):132–143. doi:10.1016/j.ijpharm.2012.01.005.
  • Lambert WJ, Peck KD. 1995. Development of an in situ forming biodegradable poly-lactide-coglycolide system for the controlled release of proteins. J Controlled Release. 33(1):189–195. doi:10.1016/0168-3659(94)00083-7.
  • Li Z, Mu H, Weng Larsen S, Jensen H, Østergaard J. 2021. An in vitro gel-based system for characterizing and predicting the long-term performance of PLGA in situ forming implants. Int J Pharm. 609:121183. doi:10.1016/j.ijpharm.2021.121183.
  • Lin X, Shi X, Zheng X, Shen L, Feng Y. 2014. Injectable long-acting systems for Radix Ophiopogonis polysaccharide based on mono-PEGylation and in situ formation of a PLGA depot. Int J Nanomedicine. 9:5555–5563. doi:10.2147/IJN.S71819.
  • Lipp L, Sharma D, Banerjee A, Singh J. 2020. In vitro and in vivo optimization of phase sensitive smart polymer for controlled delivery of rivastigmine for treatment of alzheimer’s disease. Pharm Res. 37(3):34. doi:10.1007/s11095-020-2757-6.
  • Liu D, Xu H, Tian B, Yuan K, Pan H, Ma S, Yang X, Pan W. 2012. Fabrication of carvedilol nanosuspensions through the anti-solvent precipitation–ultrasonication method for the improvement of dissolution rate and oral bioavailability. AAPS PharmSciTech. 13(1):295–304. doi:10.1208/s12249-011-9750-7.
  • Liu H, Venkatraman SS. 2012a. Effect of polymer type on the dynamics of phase inversion and drug release in injectable in situ gelling systems. J Biomater Sci Polym Ed. 23(1–4):251–266. doi:10.1163/092050610X549171.
  • Liu H, Venkatraman SS. 2012b. Cosolvent effects on the drug release and depot swelling in injectable in situ depot-forming systems. J Pharm Sci. 101(5):1783–1793. doi:10.1002/jps.23065.
  • Liu P, Chen G, Zhang J. 2022. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules. 27(4):1372. doi:10.3390/molecules27041372.
  • Liu Q, Zhang H, Zhou G, Xie S, Zou H, Yu Y, Li G, Sun D, Zhang G, Lu Y, et al. 2010. In vitro and in vivo study of thymosin alpha1 biodegradable in situ forming poly(lactide-co-glycolide) implants. Int J Pharm. 397(1–2):122–129. doi:10.1016/j.ijpharm.2010.07.015.
  • Mao S, Guo C, Shi Y, Li LC. 2012. Recent advances in polymeric microspheres for parenteral drug delivery – part 1. Expert Opin Drug Deliv. 9(9):1161–1176. doi:10.1517/17425247.2012.709844.
  • McHugh AJ. 2005. The role of polymer membrane formation in sustained release drug delivery systems. J Control Release. 109(1–3):211–221. doi:10.1016/j.jconrel.2005.09.038.
  • Nikolov A, Wasan D. 2017. Oil lenses on the air–water surface and the validity of Neumann’s rule. Adv Colloid Interface Sci. 244:174–183. doi:10.1016/j.cis.2016.05.003.
  • Packhaeuser CB, Schnieders J, Oster CG, Kissel T. 2004. In situ forming parenteral drug delivery systems: an overview. Eur J Pharm Biopharm. 58(2):445–455. doi:10.1016/j.ejpb.2004.03.003.
  • Pandya AK, Vora LK, Umeyor C, Surve D, Patel A, Biswas S, Patel K, Patravale VB. 2023. Polymeric in situ forming depots for long-acting drug delivery systems. Adv Drug Deliv Rev. 200:115003. doi:10.1016/j.addr.2023.115003.
  • Parent M, Nouvel C, Koerber M, Sapin A, Maincent P, Boudier A. 2013. PLGA in situ implants formed by phase inversion: Critical physicochemical parameters to modulate drug release. J Control Release. 172(1):292–304. doi:10.1016/j.jconrel.2013.08.024.
  • Perumal S, Atchudan R, Lee W. 2022. A review of polymeric micelles and their applications. Polymers. 14(12):2510. doi:10.3390/polym14122510.
  • Saindane NS, Pagar KP, Vavia PR. 2013. Nanosuspension based in situ gelling nasal spray of carvedilol: development, in vitro and in vivo characterization. AAPS PharmSciTech. 14(1):189–199. doi:10.1208/s12249-012-9896-y.
  • Sanders LM, Kell BA, McRae GI, Whitehead GW. 1986. Prolonged controlled-release of nafarelin, a luteinizing hormone-releasing hormone analogue, from biodegradable polymeric implants: influence of composition and molecular weight of polymer. J Pharm Sci. 75(4):356–360. doi:10.1002/jps.2600750407.
  • Santos A, Sinn Aw M, Bariana M, Kumeria T, Wang Y, Losic D. 2014. Drug-releasing implants: current progress, challenges and perspectives. J Mater Chem B. 2(37):6157–6182. doi:10.1039/C4TB00548A.
  • Sharma A. 1997. Liposomes in drug delivery: progress and limitations. Int J Pharm. 154(2):123–140. doi:10.1016/S0378-5173(97)00135-X.
  • Sharma G, Dhankar G, Thakur K, Raza K, Katare OP. 2016. Benzyl benzoate-loaded microemulsion for topical applications: enhanced dermatokinetic profile and better delivery promises. AAPS PharmSciTech. 17(5):1221–1231. doi:10.1208/s12249-015-0464-0.
  • Suh MS, Kastellorizios M, Tipnis N, Zou Y, Wang Y, Choi S, Burgess DJ. 2021. Effect of implant formation on drug release kinetics of in situ forming implants. Int J Pharm. 592:120105. doi:10.1016/j.ijpharm.2020.120105.
  • Sun Y, Jensen H, Petersen NJ, Larsen SW, Østergaard J. 2017. Phase separation of in situ forming poly (lactide-co-glycolide acid) implants investigated using a hydrogel-based subcutaneous tissue surrogate and UV–vis imaging. J Pharm Biomed Anal. 145:682–691. doi:10.1016/j.jpba.2017.07.056.
  • Thakur RRS, McMillan HL, Jones DS. 2014. Solvent induced phase inversion-based in situ forming controlled release drug delivery implants. J Controlled Release. 176:8–23. doi:10.1016/j.jconrel.2013.12.020.
  • Vlachopoulos A, Karlioti G, Balla E, Daniilidis V, Kalamas T, Stefanidou M, Bikiaris ND, Christodoulou E, Koumentakou I, Karavas E, et al. 2022. Poly(Lactic Acid)-based microparticles for drug delivery applications: an overview of recent advances. Pharmaceutics. 14(2):359. doi:10.3390/pharmaceutics14020359.
  • Wang L, Kleiner L, Venkatraman S. 2003. Structure formation in injectable poly(lactide–co-glycolide) depots. J Control Release. 90(3):345–354. doi:10.1016/S0168-3659(03)00198-6.
  • Wang L, Lin X, Hong Y, Shen L, Feng Y. 2017. Hydrophobic mixed solvent induced PLGA-based in situ forming systems for smooth long-lasting delivery of radix ophiopogonis polysaccharide in rats. RSC Adv. 7(9):5349–5361. doi:10.1039/C6RA27676H.
  • Wang L, Venkatraman S, Kleiner L. 2004. Drug release from injectable depots: two different in vitro mechanisms. J Controlled Release. 99(2):207–216. doi:10.1016/j.jconrel.2004.06.021.
  • Wang L, Wang A, Zhao X, Liu X, Wang D, Sun F, Li Y. 2012. Design of a long-term antipsychotic in situ forming implant and its release control method and mechanism. Int J Pharm. 427(2):284–292. doi:10.1016/j.ijpharm.2012.02.015.
  • Wei L, Sun P, Nie S, Pan W. 2005. Preparation and evaluation of SEDDS and SMEDDS containing carvedilol. Drug Dev Ind Pharm. 31(8):785–794. doi:10.1080/03639040500216428.
  • Wischke C, Zhang Y, Mittal S, Schwendeman SP. 2010. Development of PLGA-based injectable delivery systems for hydrophobic fenretinide. Pharm Res. 27(10):2063–2074. doi:10.1007/s11095-010-0202-y.
  • Young T-H, Chen L-W. 1995. Pore formation mechanism of membranes from phase inversion process. Desalination. 103(3):233–247. doi:10.1016/0011-9164(95)00076-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.