87
Views
0
CrossRef citations to date
0
Altmetric
Original Contributions

Chest Decompressions - The Driver of CPR Efficacy: Exploring the Relationship Between Compression Rate, Depth, Recoil Velocity, and End-Tidal CO2

, , &
Received 22 Nov 2023, Accepted 13 May 2024, Published online: 21 Jun 2024
 

Abstract

Objective

Cardiopulmonary arrest survival is dependent on optimization of perfusion via high quality cardiopulmonary resuscitation (CPR), defined by a complex dynamic between rate, depth, and recoil velocity. Here we explore the interaction between these metrics and create a model that explores the impact of these variables on compression efficacy.

Methods

This study was performed in a large urban/suburban fire-based emergency medical services (EMS) system over a nine-month period from 2019 to 2020. Manual chest compression parameters [rate/depth/recoil velocity] from a cohort of out-of-hospital cardiac arrest (OOHCA) victims were abstracted from monitor defibrillators (ZOLL X-series) and end-tidal carbon dioxide (ETCO2) from sensors. The mean values of these parameters were modeled against each other using multiple regression and structural equation modeling with ETCO2 as a dependent variable.

Results

Data from a total of 335 patients were analyzed. Strong linear relationships were observed between compression depth/recoil velocity (r = .87, p < .001), ETCO2/depth (r = .23, p < .001) and ETCO2/recoil velocity (r = .61, p < .001). Parabolic relationships were observed between rate/depth (r = .39, p < .001), rate/recoil velocity (r = .26, p < .001), and ETCO2/rate (r = .20, p = .003). Rate, depth, and recoil velocity were modeled as independent variables and ETCO2 as a dependent variable with excellence model performance suggesting the primary driver of stroke volume to be recoil velocity rather than compression depth.

Conclusions

We used manual CPR metrics from out of hospital cardiac arrests to model the relationship between CPR metrics. These results consistently support the importance of chest recoil on CPR hemodynamics, suggesting that guidelines for optimal CPR should emphasize the importance of maximum chest recoil.

Acknowledgments

The authors would like to thank the paramedics and Emergency Medical Technicians of the Riverside County Fire Department for their excellent service to the citizens of Riverside County.

Declaration of Generative AI in Scientific Writing

The authors did not use a generative artificial intelligence (AI) tool or service to assist with preparation or editing of this work. The author(s) take full responsibility for the content of this publication.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

None.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 85.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.