87
Views
0
CrossRef citations to date
0
Altmetric
Original Contributions

Chest Decompressions - The Driver of CPR Efficacy: Exploring the Relationship Between Compression Rate, Depth, Recoil Velocity, and End-Tidal CO2

, , &
Received 22 Nov 2023, Accepted 13 May 2024, Published online: 21 Jun 2024

References

  • Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, et al. Heart disease and stroke statistics - 2023 update: a report from the American Heart Association. Circulation. 2023;147(8):E93–E621. doi:10.1161/CIR.0000000000001137.
  • Nichol G, Daya MR, Morrison LJ, Aufderheide TP, Vaillancourt C, Vilke GM, Idris A, Brown S. Compression depth measured by accelerometer vs. outcome in patients with out-of-hospital cardiac arrest. Resuscitation. 2021;167:95–104. doi:10.1016/j.resuscitation.2021.07.013.
  • Vadeboncoeur T, Stolz U, Panchal A, Silver A, Venuti M, Tobin J, Smith G, Nunez M, Karamooz M, Spaite D, et al. Chest compression depth and survival in out-of-hospital cardiac arrest. Resuscitation. 2014;85(2):182–188. doi:10.1016/j.resuscitation.2013.10.002.
  • Halperin HR, Lee K, Zviman M, Illindala U, Lardo A, Kolandaivelu A, Paradis NA. Outcomes from low versus high-flow cardiopulmonary resuscitation in a swine model of cardiac arrest. Am J Emerg Med. 2010;28(2):195–202.
  • Kern KB, Ewy GA, Voorhees WD, Babbs CF, Tacker WA. Myocardial perfusion pressure: a predictor of 24-hour survival during prolonged cardiac arrest in dogs. Resuscitation. 1988;16(4):241–250. doi:10.1016/0300-9572(88)90111-6.
  • Naim MY, Sutton RM, Friess SH, Bratinov G, Bhalala U, Kilbaugh TJ, Lampe JW, Nadkarni VM, Becker LB, Berg RA, et al. Blood pressure– and coronary perfusion pressure–targeted cardiopulmonary resuscitation improves 24-hour survival from ventricular fibrillation cardiac arrest. Crit Care Med. 2016;44(11):e1111–e1117. doi:10.1097/CCM.0000000000001859.
  • Paradis NA, Martin GB, Rivers EP, Goetting MG, Appleton TJ, Feingold M, Nowak RM. Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA. 1990;263(8):1106–1113. doi:10.1001/jama.1990.03440080084029.
  • Falk JL, Rackow EC, Weil MH. End-tidal carbon dioxide concentration during cardiopulmonary resuscitation. N Engl J Med. 1988;318(10):607–611. doi:10.1056/NEJM198803103181005.
  • Abella BS, Alvarado JP, Myklebust H, Edelson DP, Barry A, O'Hearn N, Vanden Hoek TL, Becker LB. Quality of cardiopulmonary resuscitation during in-hospital cardiac arrest. JAMA. 2005;293(3):305–310. doi:10.1001/jama.293.3.305.
  • Wik L, Kramer-Johansen J, Myklebust H, Sørebø H, Svensson L, Fellows B, Steen PA. Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest. JAMA. 2005;293(3):299–304. doi:10.1001/jama.293.3.299.
  • Kramer-Johansen J, Myklebust H, Wik L, Fellows B, Svensson L, Sørebø H, Steen PA. Quality of out-of-hospital cardiopulmonary resuscitation with real time automated feedback: a prospective interventional study. Resuscitation. 2006;71(3):283–292. doi:10.1016/j.resuscitation.2006.05.011.
  • Edelson DP, Abella BS, Kramer-Johansen J, Wik L, Myklebust H, Barry AM, Merchant RM, Hoek TLV, Steen PA, Becker LB, et al. Effects of compression depth and pre-shock pauses predict defibrillation failure during cardiac arrest. Resuscitation. 2006;71(2):137–145. doi:10.1016/j.resuscitation.2006.04.008.
  • Stiell IG, Brown SP, Christenson J, Cheskes S, Nichol G, Powell J, Bigham B, Morrison LJ, Larsen J, Hess E, et al. What is the role of chest compression depth during out-of-hospital cardiac arrest resuscitation? *Crit Care Med. 2012;40(4):1192–1198. doi:10.1097/CCM.0b013e31823bc8bb.
  • Zuercher M, Hilwig RW, Ranger-Moore J, Nysaether J, Nadkarni VM, Berg MD, Kern KB, Sutton R, Berg RA. Leaning during chest compressions impairs cardiac output and left ventricular myocardial blood flow in piglet cardiac arrest. Crit Care Med. 2010;38(4):1141–1146. doi:10.1097/CCM.0b013e3181ce1fe2.
  • Kovacs A, Vadeboncoeur TF, Stolz U, Spaite DW, Irisawa T, Silver A, Bobrow BJ. Chest compression release velocity: association with survival and favorable neurologic outcome after out-of-hospital cardiac arrest. Resuscitation. 2015;92:107–114. doi:10.1016/j.resuscitation.2015.04.026.
  • Indik JH, Conover Z, McGovern M, Silver AE, Spaite DW, Bobrow BJ, Kern KB. Amplitude-spectral area and chest compression release velocity independently predict hospital discharge and good neurological outcome in ventricular fibrillation out-of-hospital cardiac arrest. Resuscitation. 2015;92:122–128. doi:10.1016/j.resuscitation.2015.05.002.
  • Plaisance P, Lurie KG, Vicaut E, Adnet F, Petit JL, Epain D, Ecollan P, Gruat R, Cavagna P, Biens J, et al. A comparison of standard cardiopulmonary resuscitation and active compression–decompression resuscitation for out-of-hospital cardiac arrest. N Engl J Med. 1999;341(8):569–575. doi:10.1056/NEJM199908193410804.
  • Aufderheide TP, Frascone RJ, Wayne MA, et al. Comparative effectiveness of standard CPR versus active compression decompression CPR with augmentation of negative intrathoracic pressure for treatment of out-of-hospital cardiac arrest: results from a randomized prospective study. Lancet. 2011;377(9762):301.
  • Luo X-R, Zhang H-L, Chen G-J, Ding W-S, Huang L. Active compression-decompression cardiopulmonary resuscitation (CPR) versus standard CPR for cardiac arrest patients: a meta-analysis. World J Emerg Med. 2013;4(4):266–272. doi:10.5847/wjem.j.issn.1920-8642.2013.04.004.
  • Stiell IG, Hébert PC, Wells GA, Laupacis A, Vandemheen K, Dreyer JF, Eisenhauer MA, Gibson J, Higginson LA, Kirby AS, et al. The Ontario trial of active compression-decompression cardiopulmonary resuscitation for in-hospital and prehospital cardiac arrest. JAMA. 1996;275(18):1417–1423. doi:10.1001/jama.1996.03530420045034.
  • Considine J, Gazmuri RJ, Perkins GD, Kudenchuk PJ, Olasveengen TM, Vaillancourt C, Nishiyama C, Hatanaka T, Mancini ME, Chung SP, et al. Chest compression components (rate, depth, chest wall recoil and leaning): a scoping review. Resuscitation. 2020;146:188–202. doi:10.1016/j.resuscitation.2019.08.042.
  • González-Otero DM, Russell JK, Ruiz JM, Ruiz de Gauna S, Gutiérrez JJ, Leturiondo LA, Daya MR. Association of chest compression and recoil velocities with depth and rate in manual cardiopulmonary resuscitation. Resuscitation. 2019;142:119–126. doi:10.1016/j.resuscitation.2019.07.023.
  • Russell JK, Leturiondo M, González-Otero DM, Gutiérrez JJ, Daya MR, Ruiz de Gauna S. Chest compression release and recoil dynamics in prolonged manual cardiopulmonary resuscitation. Resuscitation. 2021;167:180–187. doi:10.1016/j.resuscitation.2021.08.036.
  • Davis DP, Graham PG, Husa RD, Lawrence B, Minokadeh A, Altieri K, Sell RE. A performance improvement-based resuscitation programme reduces arrest incidence and increases survival from in-hospital cardiac arrest. Resuscitation. 2015;92:63–69. doi:10.1016/j.resuscitation.2015.04.008.
  • E De R, Vanwulpen M, Hachimi-Idrissi S. Chest compression release velocity: an independent determinant of end-tidal carbon dioxide in out-of-hospital cardiac arrest. Am J Emerg Med. 2022;54:71–75.
  • Wyckoff MH, Greif R, Morley PT, Ng K-C, Olasveengen TM, Singletary EM, Soar J, Cheng A, Drennan IR, Liley HG, et al. 2022 International consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations: summary from the basic life support; advanced life support; pediatric life support; neonatal life support; education, implementation, and teams; and first aid task forces. Circulation. 2022;146(25):e483–e557. December 20 doi:10.1161/CIR.0000000000001095.
  • Stiell IG, Brown SP, Nichol G, Cheskes S, Vaillancourt C, Callaway CW, Morrison LJ, Christenson J, Aufderheide TP, Davis DP, et al. What is the optimal chest compression depth during out-of-hospital cardiac arrest resuscitation of adult patients? Circulation. 2014;130(22):1962–1970. November 25 doi:10.1161/CIRCULATIONAHA.114.008671.
  • Weil MH, Bisera J, Trevino RP, Rackow EC. Cardiac output and end-tidal carbon dioxide. Crit Care Med. 1985;13(11):907–909. doi:10.1097/00003246-198511000-00011.
  • Sandroni C, Santis P, De DS. Capnography during cardiac arrest. Resuscitation. 2018;132:73–77. doi:10.1016/j.resuscitation.2018.08.018.
  • Grmec S, Lah K, Tusek-Bunc K. Difference in end-tidal CO 2 between asphyxia cardiac arrest and ventricular fibrillation/pulseless ventricular tachycardia cardiac arrest in the prehospital setting. Crit Care. 2003;7(6):R139–R144. doi:10.1186/cc2369.
  • Heradstveit BE, Sunde K, Sunde G-A, Wentzel-Larsen T, Heltne J-K. Factors complicating interpretation of capnography during advanced life support in cardiac arrest—a clinical retrospective study in 575 patients. Resuscitation. 2012;83(7):813–818. doi:10.1016/j.resuscitation.2012.02.021.
  • Gazmuri RJ, Ayoub IM, Radhakrishnan J, Motl J, Upadhyaya MP. Clinically plausible hyperventilation does not exert adverse hemodynamic effects during CPR but markedly reduces end-tidal PCO 2. Resuscitation. 2012;83(2):259–264. doi:10.1016/j.resuscitation.2011.07.034.
  • Idris AH, Aramendi Ecenarro E, Leroux B, Jaureguibeitia X, Yang BY, Shaver S, Chang MP, Rea T, Kudenchuk P, Christenson J, et al. Bag-valve-mask ventilation and survival from out-of-hospital cardiac arrest: a multicenter study. Circulation. 2023;148(23):1847–1856. doi:10.1161/CIRCULATIONAHA.123.065561.
  • Jaeger D, Kalra R, Sebastian P, et al. Left rib fractures during cardiopulmonary resuscitation are associated with hemodynamic variations in a pig model of cardiac arrest. Resusc Plus. 2023;15:100429. doi:10.1016/j.resplu.2023.100429.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.