168
Views
1
CrossRef citations to date
0
Altmetric
Articles

Effect of geometrical parameters and tool pattern of multi-tooth sawing on cutting of sheet molding compound composite: FE study

, , &
Pages 95-119 | Published online: 21 Dec 2021
 

Abstract

Short glass fiber composites, particularly sheet molding compound (SMC) materials, are becoming increasingly important alternative in various contemporary aerospace, automotive, and electronic applications. For these manufacturing industries, the quality of the machined SMC composite is still a challenging target. The article proposes a new tool design with an offset between teeth to minimize friction, limit damage and promote chip removal when drilling composite materials. The effects of the tool’s geometric parameters, especially the rake, the inclination and the complementary side cutting edge angles on the material removal process, as well as the cutting and thrust forces, are investigated. A 3D finite element model of a representative multi-tooth tool is developed using the ABAQUS\Explicit code. The results show that fine-tuning the geometric parameters of the tool reduces the induced machining damage and enhances the chip removal and the flow evolution. The rake angle has a significant influence on the cutting and thrust forces. However, both forces are insensitive to the inclination angle. The complementary side cutting edge angle influences only the thrust force. The presented outcomes not only give insights into the cutting process, but also improve the SMC machinability.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 431.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.