328
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Effect of wettability on oil recovery and breakthrough time for immiscible gas flooding

, , , , &
Pages 1705-1711 | Published online: 26 Oct 2016
 

ABSTRACT

The effect of wettability on oil recovery at higher water saturation is still not fully understood, especially in the case of mixed wettability. This study was conducted to examine the effects of wettability on oil recovery and breakthrough time through experiments for two wettability conditions (water-wet and mixed-wet) and three water saturations (20%, 40%, and 60%). Clashach sandstone core with a porosity of 12.8% and a permeability of 75 md was utilized as the porous media. Immiscible gas flooding was performed by injecting nitrogen gas into the core at room temperature and pressure. The results showed 54.3% and 48.8% of the initial oil in place (IOIP) as the ultimate oil recovery at 40% water saturation from mixed-wet core and water-wet core respectively. In contrast, the water-wet core displayed better results (32.6% of the IOIP) in terms of breakthrough time compared to the results of water-wet core (10.6% of the IOIP) at the same water saturation. In conclusion, oil recovery was found highly dependent on water saturation while breakthrough time was mainly affected by the wettability of the cores.

Funding

The authors are grateful to University of Technology Malaysia and the Ministry of Science, Technology, and Innovations for awarding the research grant.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 855.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.