Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 49, 2014 - Issue 13
269
Views
7
CrossRef citations to date
0
Altmetric
ARTICLES

Comparison of five wastewater COD fractionation methods for dynamic simulation of MBR systems

, &
Pages 1553-1563 | Received 02 Mar 2014, Published online: 19 Aug 2014
 

Abstract

Five different wastewater COD fractionation methods were employed for simulating an experimental MBR wastewater treatment plant using WEST. The predictions of dynamic simulations using as input the data obtained according to each influent characterization methodology were compared with the results of the experimental system and differences between experimental and predicted values were analyzed in order to select the fractionation method which provides the best fitting and minimizes errors. Three of these methods were based on the determination of the biodegradable fractions using respirometric assays of real wastewater filtered through 0.45- and 0.22-μm pore size filters or adding a previous flocculation step before filtration. Moreover, a method based on physicochemical analyses and another one based on theoretical coefficients were also compared. Simulated system performance and effluent quality greatly depended upon the influent characterization and the proper model calibration. Thus the importance of selecting a suitable fractionation methodology is high, especially in MBR systems working at specific operational conditions that may alter COD fractions. In this study, MLSS in the bioreactors and sludge supernatant COD concentrations were better predicted when the influent characterization was based on respirometric methods. Both the method based on theoretical coefficients and the physicochemical method underestimated the particulate inert fraction and therefore, also the MLSS concentrations. Moreover, these results showed that for a correct effluent COD prediction in MBR systems, it is necessary to take into account that the membrane retained part of the soluble inert fraction.

Acknowledgments

This research was conducted at the Department of Civil Engineering and the Institute of Water Research, University of Granada, with the collaboration of EMASAGRA.

Additional information

Funding

This research (NET 324936/1) was funded by the Andalusian Government (Andalusian Water Agency) with European Union funds (FEDER).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.