Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 56, 2021 - Issue 8
192
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Bioremoval and tolerance study of sulfamethoxazole using whole cell Trichoderma harzianum isolated from rotten tree bark

, &
Pages 920-927 | Received 23 Sep 2020, Accepted 02 Jun 2021, Published online: 16 Jul 2021
 

Abstract

Antibiotic contamination raises concerns over antibiotic resistance genes (ARGs), which can severely impact the human health and environment. Sulfamethoxazole (SMX) is a widely used antibiotic that is incompletely metabolized in the body. In this study, the research objectives were (1) to isolate the native strain of Trichoderma sp. from the environment and analyze the tolerance toward SMX concentration by evaluating fungal growth, and (2) to investigate the potential of SMX removal by fungi. The potential fungi isolated from rotten tree bark showed 97% similarity to Trichoderma harzianum (Accession no. MH707098.1). The whole cell of fungi was examined in vitro; the strain Trichoderma harzianum BGP115 eliminated 71% of SMX after 7 days, while the white rot fungi Trametes versicolor, demonstrated 90% removal after 10 days. Furthermore, the tolerance of fungal growth toward SMX concentration at 10 mg L−1 was analyzed, which indicated that Trichoderma harzianum BGP115 (the screened strain) exhibited more tolerance toward SMX than Trametes versicolor (the reference strain). The screened fungi isolated from rotted tree bark demonstrated the ability of SMX bioremoval and the potential to be tolerant to high concentrations of SMX.

Additional information

Funding

This research was supported by National Research Council of Thailand (NRCT) under the capacity of the building and development of new researchers according to the strategic research and innovation for graduate students in 2019 and On-site Laboratory Initiative of Graduate School of Global Environmental Studies, Kyoto University.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.