Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 56, 2021 - Issue 8
194
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Bioremoval and tolerance study of sulfamethoxazole using whole cell Trichoderma harzianum isolated from rotten tree bark

, &
Pages 920-927 | Received 23 Sep 2020, Accepted 02 Jun 2021, Published online: 16 Jul 2021

References

  • Economou, V.; Gousia, P. Agriculture and Food Animals as a Source of Antimicrobial-Resistant Bacteria. Infect Drug Resist 2015, 8, 49–61. DOI: 10.2147/IDR.S55778.
  • Radke, M.; Lauwigi, C.; Heinkele, G.; Mürdter, T. E.; Letzel, M. Fate of the Antibiotic Sulfamethoxazole and Its Two Major Human Metabolites in a Water Sediment Test. Environ. Sci. Technol. 2009, 43, 3135–3141. DOI: 10.1021/es900300u.
  • Van Boeckel, T. P.; Gandra, S.; Ashok, A.; Caudron, Q.; Grenfell, B. T.; Levin, S. A.; Laxminarayan, R. Global Antibiotic Consumption 2000 to 2010: An Analysis of National Pharmaceutical Sales Data. Lancet. Infect. Dis. 2014, 14, 742–750. DOI: 10.1016/S1473-3099(14)70780-7.
  • World Health Organization (WHO), Executive summary: the selection and use of essential medicines 2019: Report of the 22nd WHO Expert Committee on the selection and use of essential medicines: WHO Headquarters, Geneva, 1–5 April 2019. World Health Organization; 2019.
  • Xue, W.; Zhou, Q.; Li, F. Bacterial Community Changes and Antibiotic Resistance Gene Quantification in Microbial Electrolysis Cells during Long-Term Sulfamethoxazole Treatment. Bioresour. Technol. 2019, 294, 122170. DOI: 10.1016/j.biortech.2019.122170.
  • Yang, S.; Hai, F. I.; Nghiem, L. D.; Price, W. E.; Roddick, F.; Moreira, M. T.; Magram, S. F. Understanding the Factors Controlling the Removal of Trace Organic Contaminants by White-Rot Fungi and Their Lignin Modifying Enzymes: A Critical Review. Bioresour. Technol. 2013, 141, 97–108. DOI: 10.1016/j.biortech.2013.01.173.
  • García-Galán, M. J.; Díaz-Cruz, M. S.; Barceló, D. Determination of 19 Sulfonamides in Environmental Water Samples by Automated on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS). Talanta 2010, 81, 355–366. DOI: 10.1016/j.talanta.2009.12.009.
  • Rodriguez-Mozaz, S.; Chamorro, S.; Marti, E.; Huerta, B.; Gros, M.; Sanchez-Melsio, A.; Borrego, C. M.; Barcelo, D.; Balcazar, J. L. Occurrence of Antibiotics and Antibiotic Resistance Genes in Hospital and Urban Wastewaters and Their Impact on the Receiving River. Water Res 2015, 69, 234–242. DOI: 10.1016/j.watres.2014.11.021.
  • Sinthuchai, D.; Boontanon, S. K.; Boontanon, N.; Polprasert, C. Evaluation of Removal Efficiency of Human Antibiotics in Wastewater Treatment Plants in Bangkok, Thailand. Water Sci Technol 2016, 73, 182–191. DOI: 10.2166/wst.2015.484.
  • Dinh, Q.; Moreau-Guigon, E.; Labadie, P.; Alliot, F.; Teil, M. J.; Blanchard, M.; Eurin, J.; Chevreuil, M. Fate of Antibiotics from Hospital and Domestic Sources in a Sewage Network. Sci Total Environ 2017, 575, 758–766. DOI: 10.1016/j.scitotenv.2016.09.118.
  • Yuan, X.; Qiang, Z.; Ben, W.; Zhu, B.; Qu, J. Distribution, Mass Load and Environmental Impact of Multiple-Class Pharmaceuticals in Conventional and Upgraded Municipal Wastewater Treatment Plants in East China. Environ. Sci. Process. Impacts. 2015, 17, 596–605. DOI: 10.1039/c4em00596a.
  • Yu, Z.; Sun, G.; Liu, Y.; Yin, D.; Zhang, J. Trans-Generational Influences of Sulfamethoxazole on Lifespan, Reproduction and Population Growth of Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 2017, 135, 312–318. DOI: 10.1016/j.ecoenv.2016.10.017.
  • Su, H.-C.; Ying, G.-G.; Tao, R.; Zhang, R.-Q.; Zhao, J.-L.; Liu, Y.-S. Class 1 and 2 Integrons, Sul Resistance Genes and Antibiotic Resistance in Escherichia coli Isolated from Dongjiang River, South China. Environ. Pollut. 2012, 169, 42–49. DOI: 10.1016/j.envpol.2012.05.007.
  • Wang, F.-H.; Qiao, M.; Lv, Z.-E.; Guo, G.-X.; Jia, Y.; Su, Y.-H.; Zhu, Y.-G. Impact of Reclaimed Water Irrigation on Antibiotic Resistance in Public Parks, Beijing, China. Environ. Pollut. 2014, 184, 247–253. DOI: 10.1016/j.envpol.2013.08.038.
  • World Health Organization (WHO), Antimicrobial Resistance: Global Report on Surveillance. Geneva: World Health Organization, 2014, xxii, 232.
  • Cai, Q.; Hu, J. Decomposition of Sulfamethoxazole and Trimethoprim by Continuous UVA/LED/TiO2 Photocatalysis: Decomposition Pathways, Residual Antibacterial Activity and Toxicity. J. Hazard. Mater. 2017, 323, 527–536. DOI: 10.1016/j.jhazmat.2016.06.006.
  • del Mar Gómez-Ramos, M.; Mezcua, M.; Agüera, A.; Fernández-Alba, A. R.; Gonzalo, S.; Rodríguez, A.; Rosal, R. Chemical and Toxicological Evolution of the Antibiotic Sulfamethoxazole under Ozone Treatment in Water Solution. J. Hazard. Mater. 2011, 192, 18–25. DOI: 10.1016/j.jhazmat.2011.04.072.
  • Trovó, A. G.; Nogueira, R. F.; Agüera, A.; Sirtori, C.; Fernández-Alba, A. R. Photodegradation of Sulfamethoxazole in Various Aqueous Media: persistence, Toxicity and Photoproducts Assessment. Chemosphere 2009, 77, 1292–1298. DOI: 10.1016/j.chemosphere.2009.09.065.
  • Zhang, R.; Yang, Y.; Huang, C. H.; Li, N.; Liu, H.; Zhao, L.; Sun, P. UV/H2O2 and UV/PDS Treatment of Trimethoprim and Sulfamethoxazole in Synthetic Human Urine: transformation Products and Toxicity. Environ. Sci. Technol. 2016, 50, 2573–2583. DOI: 10.1021/acs.est.5b05604.
  • Copete-Pertuz, L. S.; Plácido, J.; Serna-Galvis, E. A.; Torres-Palma, R. A.; Mora, A. Elimination of Isoxazolyl-Penicillins Antibiotics in Waters by the Ligninolytic Native Colombian Strain Leptosphaerulina sp. considerations on Biodegradation Process and Antimicrobial Activity Removal. Sci Total Environ 2018, 630, 1195–1204. DOI: 10.1016/j.scitotenv.2018.02.244.
  • Kumar, M.; Jaiswal, S.; Sodhi, K. K.; Shree, P.; Singh, D. K.; Agrawal, P. K.; Shukla, P. Antibiotics Bioremediation: Perspectives on Its Ecotoxicity and Resistance. Environ. Int. 2019, 124, 448–461. DOI: 10.1016/j.envint.2018.12.065.
  • Bautista, L. F.; Morales, G.; Sanz, R. Biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) by Laccase from Trametes Versicolor Covalently Immobilized on Amino-Functionalized SBA-15. Chemosphere 2015, 136, 273–280. DOI: 10.1016/j.chemosphere.2015.05.071.
  • Hai, F. I.; Yamamoto, K.; Nakajima, F.; Fukushi, K.; Nghiem, L. D.; Price, W. E.; Jin, B. Degradation of Azo Dye Acid Orange 7 in a Membrane Bioreactor by Pellets and Attached Growth of Coriolus Versicolour. Bioresour. Technol. 2013, 141, 29–34. DOI: 10.1016/j.biortech.2013.02.020.
  • Noman, E. A.; Al-Gheethi, A. A. S.; Talip, B. A.; Mohamed, R. M. S. R.; Nagao, H.; Kassim, A. H. M.; Rahman, J. A. Bioremediation of Xenobiotic Organic Compounds in Greywater by Fungi Isolated from Peatland, a Future Direction. Manage Greywater Develop Count. 2019, 87, 163–183.
  • Zheng, G.; Selvam, A.; Wong, J. W. Oil-in-Water Microemulsions Enhance the Biodegradation of DDT by Phanerochaete chrysosporium. Bioresour. Technol. 2012, 126, 397–403. DOI: 10.1016/j.biortech.2012.02.141.
  • Eibes, G.; Debernardi, G.; Feijoo, G.; Moreira, M. T.; Lema, J. M. Oxidation of Pharmaceutically Active Compounds by a Ligninolytic Fungal Peroxidase. Biodegradation 2011, 22, 539–550. DOI: 10.1007/s10532-010-9426-0.
  • Suda, T.; Hata, T.; Kawai, S.; Okamura, H.; Nishida, T. Treatment of Tetracycline Antibiotics by Laccase in the Presence of 1-Hydroxybenzotriazole. Bioresour. Technol. 2012, 103, 498–501. DOI: 10.1016/j.biortech.2011.10.041.
  • Badia-Fabregat, M.; Lucas, D.; Tuomivirta, T.; Fritze, H.; Pennanen, T.; Rodríguez-Mozaz, S.; Barceló, D.; Caminal, G.; Vicent, T. Study of the Effect of the Bacterial and Fungal Communities Present in Real Wastewater Effluents on the Performance of Fungal Treatments. Sci Total Environ 2017, 579, 366–377. DOI: 10.1016/j.scitotenv.2016.11.088.
  • Zafra, G.; Absalón, Á. E.; Cuevas, M. D. C.; Cortés-Espinosa, D. V. Isolation and Selection of a Highly Tolerant Microbial Consortium with Potential for PAH Biodegradation from Heavy Crude Oil-Contaminated Soils. Water. Air. Soil Pollut. 2014, 225, 1–18. DOI: 10.1007/s11270-013-1826-4.
  • Tripathi, P.; Singh, P. C.; Mishra, A.; Chauhan, P. S.; Dwivedi, S.; Bais, R. T.; Tripathi, R. D. Trichoderma: A Potential Bioremediator for Environmental Clean up. Clean Techn. Environ. Policy 2013, 15, 541–550. DOI: 10.1007/s10098-012-0553-7.
  • Argumedo-Delira, R.; Alarcón, A.; Ferrera-Cerrato, R.; Almaraz, J. J.; Peña-Cabriales, J. J. Tolerance and Growth of 11 Trichoderma Strains to Crude Oil, Naphthalene, Phenanthrene and Benzo[a]Pyrene. J. Environ. Manage. 2012, 95, S291–S299. DOI: 10.1016/j.jenvman.2010.08.011.
  • Kubicek, C. P.; Bissett, J.; Druzhinina, I.; Kullnig-Gradinger, C.; Szakacs, G. Genetic and Metabolic Diversity of Trichoderma: A Case Study on South-East Asian Isolates. Fungal Genet. Biol. 2003, 38, 310–319. DOI: 10.1016/S1087-1845(02)00583-2.
  • Manasfi, R.; Chiron, S.; Montemurro, N.; Perez, S.; Brienza, M. Biodegradation of Fluoroquinolone Antibiotics and the Climbazole Fungicide by Trichoderma Species. Environ. Sci. Pollut. Res. Int. 2020, 27, 23331–23341. DOI: 10.1007/s11356-020-08442-8.
  • Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. DOI: 10.1093/molbev/msw054.
  • Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. DOI: 10.1093/molbev/mst197.
  • Singh, D.; Chen, S. The White-Rot Fungus Phanerochaete chrysosporium: Conditions for the Production of Lignin-Degrading Enzymes. Appl. Microbiol. Biotechnol. 2008, 81, 399–417. DOI: 10.1007/s00253-008-1706-9.
  • Osadolor, O. A.; Nair, R. B.; Lennartsson, P. R.; Taherzadeh, M. J. Empirical and Experimental Determination of the Kinetics of Pellet Growth in Filamentous Fungi: A Case Study Using Neurospora Intermedia. Biochem. Eng. J. 2017, 124, 115–121. DOI: 10.1016/j.bej.2017.05.012.
  • Guo, X-L.; Zhu, Z-W.; Li, H-L. Biodegradation of Sulfamethoxazole by Phanerochaete chrysosporium. J. Mol. Liq. 2014, 198, 169–172. DOI: 10.1016/j.molliq.2014.06.017.
  • Rodarte-Morales, A.; Feijoo, G.; Moreira, M.; Lema, J. Degradation of Selected Pharmaceutical and Personal Care Products (PPCPs) by White-Rot Fungi. World J. Microbiol. Biotechnol. 2011, 27, 1839–1846. DOI: 10.1007/s11274-010-0642-x.
  • Wen, X.; Jia, Y.; Li, J. Degradation of Tetracycline and Oxytetracycline by Crude Lignin Peroxidase Prepared from Phanerochaete chrysosporium – A White Rot Fungus. Chemosphere 2009, 75, 1003–1007. DOI: 10.1016/j.chemosphere.2009.01.052.
  • Ghosh, G. C. Behavior of Antibiotics and Antiviral Drugs in Sewage Treatment. Aquat. Toxicol. 2009, 76, 122–159.
  • Jebapriya, G. R.; Gnanadoss, J. J. Screening and Molecular Characterization of White Rot Fungi Capable of Laccase Production and Dye Decolourization. Life 2014, 50, 12.
  • Li, A.; Zhu, Y.; Xu, L.; Zhu, W.; Tian, X. Comparative Study on the Determination of Assay for Laccase of Trametes sp. Afr. J. Biochem. Res. 2008, 2, 181–183.
  • Harman, G. E.; Howell, C. R.; Viterbo, A.; Chet, I.; Lorito, M. Trichoderma Species—Opportunistic, Avirulent Plant Symbionts. Nat. Rev. Microbiol. 2004, 2, 43–56. DOI: 10.1038/nrmicro797.
  • Joshi, B.; Bhatt, R.; Bahukhandi, D. Antagonistic and Plant Growth Activity of Trichoderma Isolates of Western Himalayas. J. Environ. Biol. 2010, 31, 921–928.
  • Shanmugaiah, V.; Balasubramanian, N.; Gomathinayagam, S.; Manoharan, P.; Rajendran, A. Effect of Single Application of Trichoderma Viride and Pseudomonas Fluorescens on Growth Promotion in Cotton Plants. Afr. J. Agric. Res. 2009, 4, 1220–1225.
  • Singh, A.; Shahid, M.; Srivastava, M.; Pandey, S.; Sharma, A.; Kumar, V. Optimal Physical Parameters for Growth of Trichoderma Species at Varying pH, Temperature and Agitation. Virol Mycol 2014, 3, 1–7.
  • Sadhasivam, S.; Savitha, S.; Swaminathan, K.; Lin, F.-H. Production, Purification and Characterization of Mid-Redox Potential Laccase from a Newly Isolated Trichoderma Harzianum WL1. Process Biochem. 2008, 43, 736–742. DOI: 10.1016/j.procbio.2008.02.017.
  • Sing, N. N.; Zulkharnain, A.; Roslan, H. A.; Assim, Z.; Husaini, A. Bioremediation of PCP by Trichoderma and Cunninghamella Strains Isolated from Sawdust. Braz. Arch. Biol. Technol. 2014, 57, 811–820. DOI: 10.1590/S1516-8913201402852.
  • Olicón-Hernández, D. R.; González-López, J.; Aranda, E. Overview on the Biochemical Potential of Filamentous Fungi to Degrade Pharmaceutical Compounds. Front. Microbiol. 2017, 8, 1792. DOI: 10.3389/fmicb.2017.01792.
  • de Araujo, C. A. V.; Maciel, G. M.; Rodrigues, E. A.; Silva, L. L.; Oliveira, R. F.; Brugnari, T.; Peralta, R. M.; de Souza, C. G. M. Simultaneous Removal of the Antimicrobial Activity and Toxicity of Sulfamethoxazole and Trimethoprim by White Rot Fungi. Water. Air. Soil Pollut. 2017, 228, 1–12. DOI: 10.1007/s11270-017-3525-z.
  • Polesel, F.; Andersen, H. R.; Trapp, S.; Plósz, B. G. Removal of Antibiotics in Biological Wastewater Treatment Systems-A Critical Assessment Using the Activated Sludge Modeling Framework for Xenobiotics (ASM-X)). Environ. Sci. Technol. 2016, 50, 10316–10334. DOI: 10.1021/acs.est.6b01899.
  • Cruz-Morató, C.; Ferrando-Climent, L.; Rodriguez-Mozaz, S.; Barceló, D.; Marco-Urrea, E.; Vicent, T.; Sarrà, M. Degradation of Pharmaceuticals in Non-Sterile Urban Wastewater by Trametes Versicolor in a Fluidized Bed Bioreactor. Water Res. 2013, 47, 5200–5210. DOI: 10.1016/j.watres.2013.06.007.
  • Chen, Y.; Stemple, B.; Kumar, M.; Wei, N. Cell Surface Display Fungal Laccase as a Renewable Biocatalyst for Degradation of Persistent Micropollutants Bisphenol A and Sulfamethoxazole. Environ. Sci. Technol. 2016, 50, 8799–8808. DOI: 10.1021/acs.est.6b01641.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.