304
Views
5
CrossRef citations to date
0
Altmetric
Articles

Comparative analysis of methods for heat losses in turbulent premixed flames using physically-derived reduced-order manifolds

ORCID Icon, ORCID Icon &
Pages 42-66 | Received 04 Aug 2017, Accepted 02 May 2018, Published online: 22 Jun 2018
 

Abstract

Heat losses have the potential to substantially modify turbulent combustion processes, especially the formation of pollutants such as nitrogen oxides. The chemistry governing these species is strongly temperature sensitive, making heat losses critical for an accurate prediction. To account for the effects of heat loss in large eddy simulation (LES) using a precomputed reduced-order manifold approach, thermochemical states must be precomputed not only for adiabatic conditions but also over a range of reduced enthalpy states. However, there are a number of methods for producing reduced enthalpy states, which invoke different implicit assumptions. In this work, a set of a priori and a posteriori LES studies have been performed for turbulent premixed flames considering heat losses within a precomputed reduced-order manifold approach to determine the sensitivity to the method by which reduced enthalpy states are generated. Two general approaches are explored for generating these reduced enthalpy states and are compared in detail to assess any effects on turbulent flame structure and emissions. In the first approach, the enthalpy is reduced at the boundary of the one-dimensional (1D) premixed flame solution, resulting in a single enthalpy deficit for a single premixed flame solution. In the second approach, a variable heat loss source term is introduced into the 1D flame solutions by mimicking a real heat loss to reduce the post-flame enthalpy. The two approaches are compared in methane–air piloted turbulent premixed planar jet flames with different diluents that maintain a constant adiabatic flame temperature but experience different radiation heat losses. Both a priori and a posteriori results, as well as a chemical pathway analysis, indicate that the manner by which the heat loss is accounted for in the manifold is of secondary importance compared to other model uncertainties such as the chemical mechanism, except in situations where heat loss is unphysically fast compared to the flame time scale. A new theoretical framework to explain this insensitivity is also proposed, and its validity is briefly assessed.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The authors gratefully acknowledge funding from the U.S. Department of Energy, National Energy Technology Laboratory through the University Turbine Systems Research Program, award number DE-FE0011822 (Office of Fossil Energy). The simulations presented in this article were performed on computational resources supported by the Princeton Institute for Computational Science and Engineering (PICSciE) and the Princeton University Office of Information Technology's Research Computing Department.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 288.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.