304
Views
5
CrossRef citations to date
0
Altmetric
Articles

Comparative analysis of methods for heat losses in turbulent premixed flames using physically-derived reduced-order manifolds

ORCID Icon, ORCID Icon &
Pages 42-66 | Received 04 Aug 2017, Accepted 02 May 2018, Published online: 22 Jun 2018

References

  • S. B. Pope, Small scales, many species and the manifold challenges of turbulent combustion, Proc. Combust. Inst. 34 (2013), pp. 1–31. doi: 10.1016/j.proci.2012.09.009
  • J.A. van Oijen and L.P.H. de Goey, Modelling of premixed laminar flames using flamelet-generated manifolds, Combust. Sci. Technol. 161 (2000), pp. 113–137. doi: 10.1080/00102200008935814
  • J.C. Sutherland and A. Parente, Combustion modeling using principal component analysis, Proc. Combust. Inst. 32 (2009), pp. 1563–1570. doi: 10.1016/j.proci.2008.06.147
  • A. Parente, J.C. Sutherland, L. Tognotti, and P.J. Smith, Identification of low-dimensional manifolds in turbulent flames, Proc. Combust. Inst. 32 (2009), pp. 1579–1586. doi: 10.1016/j.proci.2008.06.177
  • A. Parente and J.C. Sutherland, Principal component analysis of turbulent combustion data: Data pre-processing and manifold sensitivity, Combust. Flame 160 (2013), pp. 340–350. doi: 10.1016/j.combustflame.2012.09.016
  • U. Maas and S.B. Pope, Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds, Proc. Combust Inst. 24 (1992), pp. 103–112. doi: 10.1016/S0082-0784(06)80017-2
  • O. Gicquel, N. Darabiha, and D. Thévenin, Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, Proc. Combust. Inst. 28 (2000), pp. 1901–1908. doi: 10.1016/S0082-0784(00)80594-9
  • C.D. Pierce and P. Moin, Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, J. Fluid Mech. 504 (2004), pp. 73–97. doi: 10.1017/S0022112004008213
  • U. Maas and S.B. Pope, Laminar flame calculations using simplified chemical kinetics based on intrinsic low-dimensional manifolds, Proc. Combust. Inst. 25 (1994), pp. 1349–1356. doi: 10.1016/S0082-0784(06)80777-0
  • U. Maas, Efficient calculation of intrinsic low-dimensional manifolds for the simplification of chemical kinetics, Comput. Vis. Sci. 1 (1998), pp. 69–81. doi: 10.1007/s007910050007
  • O. Gicquel, D. Thevenin, M. Hilka, and N. Darabiha, Direct numerical simulation of turbulent premixed flames using intrinsic low-dimensional manifolds, Combust. Theory Model. 3 (1999), pp. 479–502. doi: 10.1088/1364-7830/3/3/304
  • J.A. van Oijen, F.A. Lammer, and L.P.H. de Goey, Modeling of complex premixed burner systems by using flamelet-generated manifolds, Combust. Flame 127 (2001), pp. 2124–2134. doi: 10.1016/S0010-2180(01)00316-9
  • J.A. Van Oijen and L.P.H. de Goey, Modelling of premixed counterflow flames using the flamelet-generated manifold method, Combust. Theory Model. 6 (2002), pp. 463–478. doi: 10.1088/1364-7830/6/3/305
  • A.W. Vreman, J.A. Van Oijen, L.P.H. De Goey, and R.J.M. Bastiaans, Direct numerical simulation of hydrogen addition in turbulent premixed Bunsen flames using flamelet-generated manifold reduction, Int. J. Hydrog. Energy. 34 (2009), pp. 2778–2788. doi: 10.1016/j.ijhydene.2009.01.075
  • M. Ihme, C.M. Cha, and H. Pitsch, Prediction of local extinction and re-ignition effects in non-premixed turbulent combustion using a flamelet/progress variable approach, Proc. Combust. Inst. 30 (2005), pp. 793–800. doi: 10.1016/j.proci.2004.08.260
  • M. Ihme and H. Pitsch, Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model: 1. a priori study and presumed PDF closure, Combust. Flame 155 (2008), pp. 70–89. doi: 10.1016/j.combustflame.2008.04.001
  • M. Ihme and H. Pitsch, Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model: 2. application in LES of Sandia flames D and E, Combust. Flame 155 (2008), pp. 90–107. doi: 10.1016/j.combustflame.2008.04.015
  • M.E. Mueller and H. Pitsch, LES modeling of sooting turbulent nonpremixed flames, Combust. Flame 159 (2012), pp. 2166–2180. doi: 10.1016/j.combustflame.2012.02.001
  • M. Ihme and H. Pitsch, Modeling of radiation and nitric oxide formation in turbulent nonpremixed flames using a flamelet/progress variable formulation, Phys. Fluids 20 (2008), p. 055110. doi: 10.1063/1.2911047
  • D. Carbonell, C.D. Perez-Segarra, P.J. Coelho, and A. Oliva, Flamelet mathematical models for non-premixed laminar combustion, Combust. Flame 156 (2009), pp. 334–347. doi: 10.1016/j.combustflame.2008.07.011
  • Y. Tang, H. Koo, C. Lietz, V. Raman, Numerical study on flame stabilization mechanism of a multi-jet burner with LES flamelet approach, 54th AIAA Aerospace Sciences Meeting, San Diego, CA, 2016, p. 1395.
  • F. Proch and A.M. Kempf, Modeling heat loss effects in the large eddy simulation of a model gas turbine combustor with premixed flamelet generated manifolds, Proc. Combust. Inst. 35 (2015), pp. 3337–3345. doi: 10.1016/j.proci.2014.07.036
  • J.A. van Oijen, A. Donini, R.J.M. Bastiaans, J.H.M. ten Thije Boonkkamp, and L.P.H. de Goey, State-of-the-art in premixed combustion modeling using flamelet generated manifolds, Prog. Energy. Combust. Sci. 57 (2016), pp. 30–74. doi: 10.1016/j.pecs.2016.07.001
  • M. Valorani and S. Paolucci, The G-Scheme: A framework for multi-scale adaptive model reduction, J. Comput. Phys. 228 (2009), pp. 4665–4701. doi: 10.1016/j.jcp.2009.03.011
  • S.H. Won, B. Windom, B. Jiang, and Y. Ju, The role of low temperature fuel chemistry on turbulent flame propagation, Combust. Flame 161 (2014), pp. 475–483. doi: 10.1016/j.combustflame.2013.08.027
  • C.B. Reuter, S.H. Won, S. Nakane, Y. Ju, Study of the thermal, kinetic, and transport effects of H2O and CO2 dilution on turbulent premixed flames of methane/air, 9th U.S. National Combustion Meeting, Cincinatti, OH, 2015.
  • C.B. Reuter, S.H. Won, and Y. Ju, Effects of CO2 addition on the turbulent flame front dynamics and propagation speeds of methane/air mixtures, J. Eng. Gas Turbines Power (2018), in press.
  • N. Burali, S. Lapointe, B. Bobbitt, G. Blanquart, and Y. Xuan, Assessment of the constant non-unity Lewis number assumption in chemically-reacting flows, Combust. Theory Model. 20 (2016), pp. 632–657. doi: 10.1080/13647830.2016.1164344
  • H. Pitsch, Flame Master. A C++ computer program for 0D combustion and 1D laminar flame calculations.
  • C.T. Bowman, M. Frenklach, W.R. Gardiner, and G. Smith, The GRI 3.0 chemical kinetic mechanism, University of California, Berkley, 1999.
  • Chemical-kinetic mechanisms for combustion applications. San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego, 2014.
  • T. Grenga, S. Paolucci, M. Valorani, Sensitivity analysis and mechanism simplification using the G-Scheme framework, Combust. Flame 189 (2018), pp. 275–287. doi: 10.1016/j.combustflame.2017.10.039
  • O. Desjardins, G. Blanquart, G. Balarac, and H. Pitsch, High order conservative finite difference scheme for variable density low Mach number turbulent flows, J. Comput. Phys. 227 (2008), pp. 7125–7159. doi: 10.1016/j.jcp.2008.03.027
  • J.F. MacArt and M.E. Mueller, Semi-implicit iterative methods for low Mach number turbulent reacting flows: Operator splitting versus approximate factorization, J. Comput. Phys. 326 (2016), pp. 569–595. doi: 10.1016/j.jcp.2016.09.016
  • G.S. Jiang and D. Peng, Weighted ENO schemes for Hamilton-Jacobi equations, SIAM. J. Sci. Comput. 21 (2000), pp. 2126–2143. doi: 10.1137/S106482759732455X
  • M. Germano, U. Piomelli, P. Moin, and W.H. Cabot, A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A 3 (1991), pp. 1760–1765. doi: 10.1063/1.857955
  • P. Moin, K. Squires, W. Cabot and S. Lee, A dynamic subgrid-scale model for compressible turbulence and scalar transport, Phys. Fluids A 3 (1991), pp. 2746–2757. doi: 10.1063/1.858164
  • D.K. Lilly, A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids A 4 (1992), pp. 633–635. doi: 10.1063/1.858280
  • C. Meneveau, T.S. Lund and W.H. Cabot, A Lagrangian dynamic subgrid-scale model of turbulence, J. Fluid Mech. 319 (1996), pp. 353–385. doi: 10.1017/S0022112096007379
  • J. Réveillon and L. Vervisch, Response of the dynamic LES model to heat release induced effects, Phys. Fluids 8 (1996), pp. 2248–2250. doi: 10.1063/1.868999
  • C. Rosales and C. Meneveau, Linear forcing in numerical simulations of isotropic turbulence: Physical space implementations and convergence properties, Phys. Fluids 17 (2005), p. 095106. doi: 10.1063/1.2047568
  • P.L. Carroll and G. Blanquart, A proposed modification to Lundgren's physical space velocity forcing method for isotropic turbulence, Phys. Fluids 25 (2013), p. 105114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.