213
Views
2
CrossRef citations to date
0
Altmetric
Articles

A comprehensive assessment of fractal wrinkling/eddy dissipation based combustion model for simulating conventional turbulent premixed and non-premixed flames

&
Pages 235-268 | Received 21 Apr 2020, Accepted 12 Nov 2020, Published online: 17 Dec 2020
 

Abstract

This paper presents a step-forward extension of the well-known chemistry/flow interaction Eddy Dissipation Concept approach for modelling both, non-premixed and premixed, combustion regimes in a Reynolds-Averaged Navier Stokes framework. The Eddy Dissipation Concept approach and its extended versions (e.g. Partially Stirred reactors, PaSR) are widely used for CFD modelling of a variety of combustion systems. This is mainly due to their capability of incorporating chemical kinetic rates in turbulent flows. However, in defining the averaged chemical reaction rates, EDC describes the fine-scale of turbulent reacting flowfield based on the so-called mixing-rate calculated from turbulent velocity field, which consequently makes this model more suitable for diffusion flame/combustion regimes. In a recent study by the present authors, a hybrid Wrinkling-EDC approach is introduced to model fine scales of turbulent reacting flows in MILD combustion regimes based on flame surface density in premixed flame regimes and turbulent intermittency in diffusion flame regimes. In the present study, we study the performance of this newly developed approach for the simulation of conventional turbulent flames. The simulations are performed and validated using well-documented turbulent premixed and predominantly non-premixed flames (e.g. Flame F3 of Chen et al. and Sandia Flame D). In addition, all cases are simulated using a recently developed EDC model (referred to as extended EDC) along with the standard EDC version where both their results are used as a reference. The obtained results reveal better performance of the Wrinkling-EDC approach over the standard and extended versions of EDC model for the simulation of turbulent premixed flame, and a comparable performance between the extended EDC and wrinkling-EDC approach for the predictions of species concentration and temperature fields of turbulent non-premixed flames.

Acknowledgement

The financial support of this research was partially provided the Natural Sciences and Engineering Research Council of Canada (NSERC).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The financial support of this research was partially provided the Natural Sciences and Engineering Research Council of Canada (NSERC).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 288.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.