213
Views
2
CrossRef citations to date
0
Altmetric
Articles

A comprehensive assessment of fractal wrinkling/eddy dissipation based combustion model for simulating conventional turbulent premixed and non-premixed flames

&
Pages 235-268 | Received 21 Apr 2020, Accepted 12 Nov 2020, Published online: 17 Dec 2020

References

  • D. Veynante and L. Vervisch, Turbulent combusition modeling. Prog. Energy. Combust. Sci 28 (2002), pp. 193–266. doi: 10.1016/S0360-1285(01)00017-X
  • T. Echekki and E. Mastorakos, Turbulent Combustion Modeling, Advances, New Trends and Perspective, Springer, New York, 2011.
  • J. Labahn, Writer, Investigation of Conditional Source-term Estimation Approach to Modelling MILD Combustion. [Performance]. University of Waterloo, 2016.
  • N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, 2000.
  • A. Kilmenko and R. Bilger, Conditional moment closure for turbulent combustion. Prog. Energy. Combust. Sci 25 (1999), pp. 595–687. doi: 10.1016/S0360-1285(99)00006-4
  • A. Mardani, Optimization of the eddy dissipation concept (EDC) model for turbulence-chemistry interactions under hot diluted combustion of CH4/H2. Fuel 191 (2017), pp. 114–129. doi: 10.1016/j.fuel.2016.11.056
  • A. Parente, M. Malik, F. Contino, A. Cuoci and B. Dally, Extension of the eddy dissipation concept for turbulent/chemistry interaction to MILD combusiton. Fuel 163 (2016), pp. 98–111. doi: 10.1016/j.fuel.2015.09.020
  • A. Shiehnejadhesar, R. Mehrabian, R. Scharler, G.M. Goldin and I. Obernberger, Development of a gas phase combustion model suitable for low and high turbulence conditions. Fuel 126 (2014), pp. 177–187. doi: 10.1016/j.fuel.2014.02.040
  • D. Splading, “Mixing and chemical reaction in steady confined turbulent flames,” in Symp. (Int.) Combust., 1970.
  • M. Farokhi and M. Birouk, A new EDC based approach for modelig turbulence/chemistry interaction of the gas-phase of biomass combustion. Fuel 220 (2018), pp. 420–436. doi: 10.1016/j.fuel.2018.01.125
  • M. Farokhi and M. Birouk, Application of eddy dissipation concept for modeling biomass combustion, Part 1: assessment of model coefficients. Energy Fuel 12 (2016), pp. 10789–10799. doi: 10.1021/acs.energyfuels.6b01947
  • N. Peters, Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci 10 (1984), pp. 319–339. doi: 10.1016/0360-1285(84)90114-X
  • M. Buchmayr, J. Gruber, M. Hargassner and C. Hochenauer, A computationally inexpensive CFD approach for small-scale biomass burners equipped with enhanced air staging. Energy Convers. Manag 115 (2016), pp. 32–42. doi: 10.1016/j.enconman.2016.02.038
  • S. Zahirovic, R. Scharler, P. Kilpinen and I. Obernberger, Validation of flow simulation and gas combustion sub-models for the CFD-based prediction of NOx formation in biomass grate furnaces. Combust. Theor. Model 15 (2010), pp. 61–87. doi: 10.1080/13647830.2010.524312
  • R. Bilger, Conditional moment closure for turbulent reacting flows. Phys. Fluid A: Fluid Dynam 5 (1993), pp. 436–444. doi: 10.1063/1.858867
  • M.M. Salehi, Writer, Numerical simulation of turbulent premixed flames with conditional source-term estimation. [Performance]. The University of British Columbia, PhD thesis, 2012.
  • W. Bushe and H. Steiner, Conditional moment closure for large eddy simulation of non-premixed turbulent reacting. Phys. Fluid 11 (1999), pp. 1896–1906. doi: 10.1063/1.870052
  • M. Salehi, W. Bushe and K. Daun, Application of the conditional source-term estimation model for turbulence-chemistry interactions in a remixed flame. Combust. Theor. Model 16 (2012), pp. 301–320. doi: 10.1080/13647830.2011.621029
  • J. Huang and W. Bushe, Simulation of an igniting methane jet using conditional source-term estimation with a trajectory generated low-dimensional manifold. Combust. Theor. Model 11 (2007), pp. 977–1008. doi: 10.1080/13647830701324289
  • M. Stöllinger and S. Heinz, Evaluation of scalar mixing and time scale models in PDF simulations of a turbulent premixed flame. Combust Flame 157 (2010), pp. 1671–1685. doi: 10.1016/j.combustflame.2010.01.015
  • D. Haworth, Progress in probability density function methods for turbulent reacting flows. Prog Energy Combust Sci 36 (2010), pp. 168–259. doi: 10.1016/j.pecs.2009.09.003
  • B. Magnussen, “The eddy dissipation concept a bridge between science and technology,” in ECCOMAS thematic conference on computational combustion, Lisbon, Portugal, 2005.
  • Z. Li, M. Ferrarotti, A. Cuoci and A. Parente, Finite-rate chemistry modelling of non-conventional combustion regimes using a partially-Stirred reactor closure: combustion model formulation and implementation details. Appl Energy 225 (2018), pp. 637–655. doi: 10.1016/j.apenergy.2018.04.085
  • M. Farokhi and M. Birouk, A hybrid EDC/flamelet approach for modelling biomass combustion of grate-firing furnace. Combust Theor Model 23 (2019), pp. 716–747. doi: 10.1080/13647830.2019.1587177
  • I. Gran and B. Magnussen, A numerical study of a Bluff-Body Stabilized diffusion flame. Part 2. influence of combustion modeling and finite-rate chemistry. Combust. Sci. Technol 119 (1996), pp. 191–217. doi: 10.1080/00102209608951999
  • J. Aminian, C. Galletti, S. Shahhosseini and L. Tognotti, Numerical investigation of a MILD combustion burner: analysis of mixing field, chemical kinetics and turbulence-chemistry interaction. Flow Turb. Combust 88 (2012), pp. 597–623. doi: 10.1007/s10494-012-9386-z
  • B. Dally, A. Karpetis and R. Barlow, Structure of turbulent non-premixed jet flames in a diluted hoy coflow. Proc. Combust. Inst 29 (2002), pp. 1147–1154. doi: 10.1016/S1540-7489(02)80145-6
  • E. Oldenhof, M. Tummers, E. van Veen and D. Roekaerts, Role of entrainment in the stabilisation region of jet-in-hot-coflow flames. Combust Flame 158 (2011), pp. 1553–1563. doi: 10.1016/j.combustflame.2010.12.018
  • M. Farokhi and M. Birouk, “Application of eddy dissipation concept for modeling biomass combustion, Part 2” Gas-phase combustion modeling of a small-scale fixed bed furnace,”. Energy Fuel 30 (2016), pp. 10800–10808. doi: 10.1021/acs.energyfuels.6b01948
  • M. Farokhi and M. Birouk, Application of an extended eddy dissipation concept approach for modeling the gas-phase combustion of grate-firing biomass furnaces. Fuel 227 (2018), pp. 412–423. doi: 10.1016/j.fuel.2018.04.102
  • M. Farokhi, M. Birouk and F. Tabet, A computational study of a small-scale biomass burner: The influence of chemistry, turbulence and combustion sub-models. Energy. Convers. Manag 143 (2017), pp. 203–217. doi: 10.1016/j.enconman.2017.03.086
  • I. Ertesvåg, Analysis of some recently proposed modifications to the eddy dissipation concept (EDC). Combust. Sci. Technol 192 (2019), pp. 1–29.
  • M. Lewandowski and I. Ertesvag, Analysis of the eddy dissipation concept formulation for MILD combustion modelling. Fuel 224 (2018), pp. 687–700. doi: 10.1016/j.fuel.2018.03.110
  • A. De, E. Oldenhof, P. Sathiah and D. Roekaerts, Numerical simulation of Delft-Jet-in-Hot-Coflow (DJHC) flame using eddy dissipation concept model for turbulent-chemistry interaction. Flow Turb. Combust 87 (2011), pp. 537–567. doi: 10.1007/s10494-011-9337-0
  • G. Sarras, Y. Mahmoudi, L. Arteaga Mendez, E. van Veen, M. Tummers and D. Roekaerts, Modeling of turbulent Natural Gas and biogas flames of the Delft Jet-in-Hot-Coflow burner: effects of Coflow temperature, fuel temperature and fuel composition on the flame lift-Off height. Flow Trub. Combust 93 (2014), pp. 607–635. doi: 10.1007/s10494-014-9555-3
  • M. Evans, C. Petre, P. Medwell and A. Parente, Generalisation of the eddy-dissipation concept for jet flames with low turbulence and low Damköhler number. Proc. Combust. Inst 37 (2019), pp. 4497–4505. doi: 10.1016/j.proci.2018.06.017
  • E. Giacomazzi, V. Battaglia and C. Bruno, The coupling of turbulence and chemistry in a premixed bluff-body flame as studied by LES. Combust Flame 138 (2004), pp. 320–335. doi: 10.1016/j.combustflame.2004.06.004
  • E. Giacomazzi, C. Bruno and B. Favini, Fractal modelling of turbulent combustion. Combust. Theor. Model 4 (2000), pp. 391–412. doi: 10.1088/1364-7830/4/4/302
  • M. Ameen and R. Ravikrishna, An EDC-based turbulent premixed combustion model. Combust. Theor. Model 15 (2011), pp. 607–622. doi: 10.1080/13647830.2011.554576
  • B. F. Magnussen, “On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow,” in Proceedings of the 19th AIAA Aerospace Science Meeting, St. Louis, 1981.
  • M. Farokhi and M. Birouk, Assessment of fractal/wrinkling Theories for describing turbulent reacting fine structures under MILD combustion regimes. Combust. Sci. Technol. (2020). doi:10.1080/00102202.2020.1715963.
  • A. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ number. C. R. (Doklady) Acad. Sci. URSS 30 (1941), pp. 301–305.
  • U. Frisch, Turbulence, Cambridge University Press, New York, 1995.
  • I. Ertesvåg and B. Magnussen, The eddy dissipation concept turbulent energy cascade model. Combust. Sci. Technol 159 (2000), pp. 213–235. doi: 10.1080/00102200008935784
  • S.B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, 2000.
  • E. Giacomazzi, C. Bruno and B. Favini, Fractal modelling of turbulent mixing. Combust. Theor. Model 3 (1999), pp. 637–655. doi: 10.1088/1364-7830/3/4/303
  • O. Gülder, Contribution of small scale turbulence to burning velocity of flamelets in the thin reaction zone regime. Proc. Combust. Inst 31 (2007), pp. 1369–1375. doi: 10.1016/j.proci.2006.07.189
  • O. Gülder, “Turbulent premixed combustion modelling using fractal geometry” Proc. Combust. Inst 23 (1991), pp. 835–842. doi: 10.1016/S0082-0784(06)80337-1
  • B. Mandelbrot, On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars. J. Fluid Mech 72 (1975), pp. 401–416. doi: 10.1017/S0022112075003047
  • R.R. Sreenivasan and C. Meneveau, Mixing, entrainment, and fractal Dimensiion of Interfaces in turbulent flows. Proc. Roy. Soc. Lond 421 (1989), pp. 79–108.
  • J. Mantzaras, P.G. Felton and F.V. Bracco, Fractals and turbulent premixed engine flames. Combust Flame 77 (1989), pp. 295–310. doi: 10.1016/0010-2180(89)90136-3
  • F. Gouldin, S. Hilton and T. Lamb, “Experimental evaluation of the fractal geometry of flamelets,” in Symp. (Int.) Combust., Pittsburgh, 1988.
  • H. Tennekes, Simple model for the small-scale structure of turbulence. Phy. Fluid 11 (1968), pp. 669–671. doi: 10.1063/1.1691966
  • Z. Li, A. Cuoci, A. Sadiki and A. Parente, Comprehensive numerical study of the Adelaide Jet in Hot-Coflow burner by means of RANS and detailed chemistry. Energy 139 (2017), pp. 555–570. doi: 10.1016/j.energy.2017.07.132
  • O. Gülder and G. Smallwood, Do turbulent premixed flame fronts in spark ignition engines behave like passive surfaces? SAE Transactions – J. Engine 109 (2001), pp. 1823–1832.
  • F.T.C. Yuen, Writer, Experimental investigation of the dynamics and structure of lean-premixed turbulent combustion. [Performance]. PhD thesis, University of Toronto, 2009.
  • F. Goulding, An application of fractals to modeling premixed turbulent flames. Combust Flame 68 (1987), pp. 249–266. doi: 10.1016/0010-2180(87)90003-4
  • F. Gouldin and K. Bray, Chemical closure model for fractal flamelets. Combust Flame 77 (1989), pp. 241–259. doi: 10.1016/0010-2180(89)90132-6
  • O. Gülder, G. Smallwood, R. Wong, D. Snelling, R. Smith, B. Deshamps and J. Sautet, Flame front surface characteristics in turbulent premixed Propane/Air combustion. Combust Flame 120 (2000), pp. 407–416. doi: 10.1016/S0010-2180(99)00099-1
  • R. Keppeler, E. Tangermann, U. Allaudin and M. Pfitzner, LES of low to high turbulent combustion in an elevated pressure enviroment. Flow Turb. Combust 92 (2014), pp. 767–802. doi: 10.1007/s10494-013-9525-1
  • P. Volpiani, T. Schmitt and D. Veynante, Combustion, A posteriori tests of a dynamic thickened flame model for large eddy simulations of turbulent premixed. Combust Flame 174 (2016), pp. 166–178. doi: 10.1016/j.combustflame.2016.08.007
  • M. Salehi and W. Bushe, Presumed PDF modeling for RANS simulation of turbulent premixed flames. Combust. Theor. Model 14 (2010), pp. 381–403. doi: 10.1080/13647830.2010.489957
  • T. Ma, O. Sten, N. Chakraborty and A. Kempf, A posteriori testing of algebraic flame surface density models for LES. Combust. Theor. Model 17 (2013), pp. 431–482. doi: 10.1080/13647830.2013.779388
  • V.L. Zimont and V. Battaglia, Joint RANS/LES approach to premixed flame Modelling in the context of the TFC combustion model. Flow Turbulence Combust 77 (2006), pp. 305–331. doi: 10.1007/s10494-006-9048-0
  • N. Chakraborty and N. Swaminathan, Effects of Lewis number on scalar variance transport in premixed flames. Flow Turb. Combust 87 (2011), pp. 261–292. doi: 10.1007/s10494-010-9305-0
  • L. Vervisch, R. Hauguel, P. Domingo and M. Rullaud, Three facets of turbulent combustion modelling: DNS of premixed v-flame, LES of lifted non-premixed flame and RANS of jet flame. J. Turb 5 (2004), pp. 1–36. doi: 10.1088/1468-5248/5/1/004
  • ANSYS, “ANSYS Fluent Theory Guide, Release 15.0,” Ansys.
  • N. Khoa Doan, N. Swaminathan and Y. Minamoto, DNS of MILD combustion with mixture fraction variations. Combust Flame 189 (2017), pp. 173–189. doi: 10.1016/j.combustflame.2017.10.030
  • L. Ma, B. Naud and D. Roekaerts, Transported PDF modeling of Ethanol Spray in Hot-Diluted Coflow flame. Flow Turbulence Combustion 96 (2016), pp. 469–502. doi: 10.1007/s10494-015-9623-3
  • Y. Chen, N. Peters, G. Schneemann, W. Wruck, U. Renz and M. Mansour, The detailed flame structure of highly stretched turbulent premixed methane-air flames. Combust Flame 107 (1996), pp. 223–244. doi: 10.1016/S0010-2180(96)00070-3
  • N. Peters, The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech 384 (1999), pp. 107–132. doi: 10.1017/S0022112098004212
  • M. Heremann, Numerical simulation of turbulent bunsen flames with a level set flamelet model. Combust Flame 145 (2006), pp. 495–511. doi: 10.1016/j.combustflame.2005.12.015
  • R. Barlow and J. Frank, “Effect of turbulence on species mass fractions in methane/air jet flames,” in Symp. (Int.) Comb., 1998.
  • R. Barlow and J. Frank, “SandiaPilotDoc21.pdf,” [Online]. Available at http://www.sandia.gov/TNF/DataArch/FlameD.html.
  • M.F. Modest, Radiative Heat Transfer, Academic press, New York, 2003.
  • N. Selçuk and N. Kayakol, Evaluation of descrete ordinates method for radiative transfer in rectangular furnaces. Int J Heat Mass Transfer 40 (1997), pp. 213–222. doi: 10.1016/0017-9310(96)00139-1
  • S. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabuilation. Combust. Theor. Model 1 (1997), pp. 41–63. doi: 10.1080/713665229
  • A. Kazakov and M. Frenklach, “DRM-22 chemical mechanism,” [Online]. Available at http://www.me.berkeley.edu/drm/.
  • G. Smith, D. Golden, M. Frenklach, N. Moriarty, B. Eiteneer, M. Goldenberg, C. Bowman, R. Hanson, S. Song, W. Gardiner, V. Lissianski and Z. Qin, “GRI 3.0 Mechanism,” [Online]. Available at www.me.berkeley.edu/gri_mech.
  • R.L. Gordon, Writer, A numerical and experimental investigation of autoignition. [Performance]. University of Sydney (PhD thesis), 2008.
  • M. Farokhi and M. Birouk, Application of eddy dissipation concept for modeling biomass combustion, Part 1: assessment of model. Energy Fuels 30 (2016), pp. 10789–10799. doi: 10.1021/acs.energyfuels.6b01947
  • Y. Minamoto, N. Fukushima, M. Tanahashi, T. Miyauchi, T. Dunstan, and N. Swaminathan, Effect of flow-geometry on turbulence-scalar interaction in premixed flames. Phy. Fluids 23 (2011). doi:10.1063/1.3665619.
  • J. Aminian, C. Galletti, S. Shahhosseini and L. Tognotti, Key modeling issues in prediction of minor species in diluted-preheated combustion conditions. Appl. Therm. Eng 31 (2011), pp. 3287–3300. doi: 10.1016/j.applthermaleng.2011.06.007
  • G. Wang, M. Boileau and D. Veynante, Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion. Combust Flame 158 (2011), pp. 2199–2213. doi: 10.1016/j.combustflame.2011.04.008
  • H. Kolla and N. Swaminathan, Strained flamelets for turbulent premixed flames. II: Laboratory flame results. Combust Flame 157 (2010), pp. 1274–1289. doi: 10.1016/j.combustflame.2010.03.016
  • I. Langella, N. Swaminathan, Y. Gao and N. Chakraborty, Large eddy simulation of premixed combustion: sensitivity to Subgrid scale velocity modeling. Combust Sci Technol 189 (2017), pp. 43–78. doi: 10.1080/00102202.2016.1193496
  • D. Butz, S. Hartl, S. Popp, S. Walther, R.S. Barlow, C. Hasse, A. Dreizler and D. Geyer, Local flame structure analysis in turbulent CH4/air flames with multi-regime characteristics. Combust Flame 210 (2019), pp. 426–438. doi: 10.1016/j.combustflame.2019.08.032
  • A. Boriones, S. Aggarwal and V. Katta, A numerical investigation of flame liftoff, stabilization, and blowout. Phys. Fluid 18 (2006). doi:10.1063/1.2191851.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.