4,328
Views
289
CrossRef citations to date
0
Altmetric
Original Articles

A new insight into land use classification based on aggregated mobile phone data

, , , , &
Pages 1988-2007 | Received 20 Oct 2013, Accepted 06 Apr 2014, Published online: 08 May 2014
 

Abstract

Land-use classification is essential for urban planning. Urban land-use types can be differentiated either by their physical characteristics (such as reflectivity and texture) or social functions. Remote sensing techniques have been recognized as a vital method for urban land-use classification because of their ability to capture the physical characteristics of land use. Although significant progress has been achieved in remote sensing methods designed for urban land-use classification, most techniques focus on physical characteristics, whereas knowledge of social functions is not adequately used. Owing to the wide usage of mobile phones, the activities of residents, which can be retrieved from the mobile phone data, can be determined in order to indicate the social function of land use. This could bring about the opportunity to derive land-use information from mobile phone data. To verify the application of this new data source to urban land-use classification, we first construct a vector of aggregated mobile phone data to characterize land-use types. This vector is composed of two aspects: the normalized hourly call volume and the total call volume. A semi-supervised fuzzy c-means clustering approach is then applied to infer the land-use types. The method is validated using mobile phone data collected in Singapore. Land use is determined with a detection rate of 58.03%. An analysis of the land-use classification results shows that the detection rate decreases as the heterogeneity of land use increases, and increases as the density of cell phone towers increases.

View correction statement:
Corrigendum

Acknowledgments

The authors wish to thank SingTel for providing the dataset. This study was funded through supports from the National Natural Science Foundation of China (Project Number: 41171345 and 41231171), a grant from National Key Technology R&D Program of China (No. 2012AA12A403). We further thank the MIT SMART Program, the Center for Complex Engineering Systems (CCES) at KACST and MIT CCES program, the National Science Foundation, the MIT Portugal Program, the AT&T Foundation, Audi Volkswagen, BBVA, The Coca Cola Company, Ericsson, Expo 2015, Ferrovial, GE and all the members of the MIT Senseable City Lab Consortium for supporting the research. The authors would also like to express gratitude to Kristian Kloeckl, Sebastian Grauwin, Michael Szell, Markus Schlapfer, Chaogui Kang) for their valuable inputs.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.