632
Views
4
CrossRef citations to date
0
Altmetric
State of the Art

Functional and field performance of epoxy asphalt technology – state-of-the-art

, &
Pages 881-918 | Received 19 Aug 2021, Accepted 26 Mar 2022, Published online: 11 Apr 2022
 

Abstract

There is an increasing demand for high strength and more durable materials in the asphalt technology market. In response to the demand, epoxy asphalt mixture (EAM) is one relatively new technology for use as a paving material in flexible pavements. There are various research works carried out on the laboratory and field performance of EAM. However, comprehensive research covering functional and field (F&F) performance of EAM is lacking. The main purpose of this review is to bridge this gap via the analysis of the functional properties of EAM. Consequently, the field performance of EAM in different case studies is reviewed and the serviceability of EAM in various transportation infrastructure is investigated. This paper also reviews the life cycle cost and maintenance of EAM. The major findings indicate that EAM shows superior F&F performance compared to the traditional hot and warm asphalt mixture. Additionally, the use of EAM is beneficial in the structure of pavements in tunnels and on bridge decks. In conclusion, the higher F&F performance of EAM supports the development of better performing pavements for various applications.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 204.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.