632
Views
4
CrossRef citations to date
0
Altmetric
State of the Art

Functional and field performance of epoxy asphalt technology – state-of-the-art

, &
Pages 881-918 | Received 19 Aug 2021, Accepted 26 Mar 2022, Published online: 11 Apr 2022

References

  • AASHTO PP2. (2001). Standard practice for mixture conditioning of hot mix asphalt. American Association of State Highway and Transportation Officials, Washington DC, USA.
  • Ai, T., Xiang, S., & Wang, Z. (2016). Effects of microwave curing on the chemical and physical properties of epoxy asphalt. Materials in Civil Engineering (ASCE), 28(11), 06016013. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001645
  • Alabaster, D., Herrington, P., & Waters, J. (2016). Optimising long-life low noise porous asphalt. In 12th International Society for Asphalt Pavements ISAP, Raleigh, North Carolina, USA.
  • Alabaster, D., Herrington, P. R., & Waters, J. C. (2008). Long life open-graded porous asphalt. In Third International Conference on Accelerated Pavement Testing, APT 2008, Madrid, Spain.
  • Alamri, M., Lu, Q., & Xin, C. (2020). Preliminary evaluation of hot mix asphalt containing reclaimed epoxy asphalt materials. Sustainability, 12(9), 3531. https://doi.org/10.3390/su12093531
  • Al Nageim, H., Al-Busaltan, S. F., Atherton, W., & Sharples, G. (2012). A comparative study for improving the mechanical properties of cold bituminous emulsion mixtures with cement and waste materials. Construction and Building Materials, 36, 743–748. https://doi.org/10.1016/j.conbuildmat.2012.06.032
  • Al-Qadi, I., Xie, W., & Roberts, R. (2010). Optimization of antenna configuration in multiple-frequency ground penetrating radar system for railroad substructure assessment. NDT & E International Journal, 43(1), 20–28. https://doi.org/10.1016/j.ndteint.2009.08.006
  • Anupam, B. R., Sahoo, U. C., Chandrappa, A. K., & Rath, P. (2021). Emerging technologies in cool pavements: A review. Construction and Building Materials, 299, 123892. https://doi.org/10.1016/j.conbuildmat.2021.123892
  • Apostolidis, P., Liu, X., van de Ven, M., Erkens, S., & Scarpas, T. (2019). Kinetic viscoelasticity of crosslinking epoxy asphalt. Transportation Research Record, 2673(3), 551–560. https://doi.org/10.1177/0361198119835530
  • Apostolidis, P., Pipintakos, G., Liu, X., van de Ven, M., Erkens, S., Scarpas, A., … Kumar, A. (2018). Epoxy modified bitumen: chemical hardening and its interpretation. in advances in materials and pavement prediction, In the International Conference on Advances in Materials and Pavement Performance Prediction (AM3P 2018), CRC Press, Doha, Qatar.
  • Asi, I. M. (2007). Evaluating skid resistance of different asphalt concrete mixes. Building and Environment, 42(1), 325–329. https://doi.org/10.1016/j.buildenv.2005.08.020
  • Aspler, J. S. (1992). NMR spectroscopy, polymer motion, and “Tack” of model printing inks. Polymer Journal of Engineering & Science, 32(18), 1379–1385. https://doi.org/10.1002/pen.760321807
  • ASTM C 1371. (2015). Standard test method for determination of emittance of materials near room temperature using portable emission meters. West Conshohocken, Pennsylvania, USA.
  • ASTM C 1549. (2016). Standard test method for determination of solar reflectance near ambient temperature using a portable solar reflectometer, West Conshohocken, Pennsylvania, USA.
  • ASTM D 2872. (2016). Standard test method for effect of heat and air on moving film of asphalt (Rolling Thin-Film Oven Test). West Conshohocken, PA, USA.
  • ASTM D 6521. (2004). Standard practice for accelerated aging of asphalt binder using a pressurized aging vessel (PAV). West Conshohocken, Pennsylvania, USA.
  • ASTM D 7064 / D7064M-08. (2013). Standard practice for open-graded friction course (OGFC) mix design. West Conshohocken, Pennsylvania, USA.
  • ASTM E 1918. (2016). Standard test method for measuring solar reflectance of horizontal and low-sloped surfaces in the field. West Conshohocken, Pennsylvania, USA.
  • Austroads. (2018). Guide to bridge technology part 3: Typical superstructures, substructures and components. Publication no: AGBT03-18, Sydney, NSW, Australia.
  • Bahmani, H., Sanij, H. K., & Peiravian, F. (2021). Estimating moisture resistance of asphalt mixture containing epoxy resin using surface free energy method and modified Lottman test. International Journal of Pavement Engineering, 1–13. https://doi.org/10.1080/10298436.2021.1904236
  • Balala, B. (1969). Studies leading to choose of epoxy asphalt for pavement on steel orthotropic bridge deck of san Mateo-Hayward bridge. Highway Research Record, 287(48), 12–18.
  • Barral, M., Garmendia, P., Muñoz, M. E., Palmillas, Z., Romera, R., Santamaria, A., & Villanueva, S. (2012). Novel bituminous mastics for pavements with improved fire performance. Construction and Building Materials, 30, 650–656. https://doi.org/10.1016/j.conbuildmat.2011.12.055
  • Bendtsen, H., Qing, L., & Kohler, E. (2010). Acoustic aging of asphalt pavements A Californian/Danish comparison (No. 171). Federal Highway Administration (FHWA), No: CA101735A, Washington, USA.
  • Bennert, T., & Cooley, L. A. (2014). Evaluate the contribution of the mixture components on the longevity and performance of FC-5 (No. BDS15 977-01). Department of Transportation, Florida, USA.
  • Blazejowski, K. (2016). Stone matrix asphalt: Theory and practice. CRC Press.
  • Bocci, E., & Canestrari, F. (2012). Experimental analysis of structural compatibility at the interface between asphalt concrete pavements and orthotropic steel deck bridges. Transportation Research Record, 2293(1), 1–7. https://doi.org/10.3141/2293-01
  • Bonati, A., Merusi, F., Bochicchio, G., Tessadri, B., Polacco, G., Filippi, S., & Giuliani, F. (2013). Effect of nanoclay and conventional flame retardants on asphalt mixtures fire reaction. Construction and Building Materials, 47, 990–1000. https://doi.org/10.1016/j.conbuildmat.2013.06.002
  • Bonati, A., Merusi, F., Polacco, G., Filippi, S., & Giuliani, F. (2012). Ignitability and thermal stability of asphalt binders and mastics for flexible pavements in highway tunnels. Construction and Building Materials, 37, 660–668. https://doi.org/10.1016/j.conbuildmat.2012.07.096
  • Bourbigot, S., Bras, M. L., Leeuwendal, R., Shen, K. K., & Schubert, D. (1999). Recent advances in the use of zinc borates in flame retardancy of EVA. Polymer Degradation and Stability, 64(3), 419–425. https://doi.org/10.1016/S0141-3910(98)00130-X
  • Brewer, R. A. (1970). Epoxy-asphalt open-graded pavement as a skid-resistance treatment on the San Francisco Bay Bridge. Highway Research Board Special Report No. 116; San Francisco, USA.
  • British Standard Institute (BSI). 12697–18. (2004). Bituminous mixtures – test methods for hot mix asphalt – Part 18: Binder drainage. British Standard, London, UK.
  • Bucknall, C. B., & Dumpleton, P. (1987). Effects of loading history on fatigue crack growth in high density polyethylene and toughened poly (methyl methacrylate). Polymer Engineering & Science, 27(2), 110–115. https://doi.org/10.1002/pen.760270203
  • Bucknall, C. B., & Gilbert, A. H. (1989). Toughening tetrafunctional epoxy resins using polyetherimide. Polymer, 30(2), 213–217. https://doi.org/10.1016/0032-3861(89)90107-9
  • Cambridge Systematics. (2005). Cool pavement report. Draft report, EPA Cool Pavements Study, Task 5. Chevy Chase, Md., Washington, USA.
  • Chaohui, W., Yi, F., Qian, C., Bao, C., & Liwei, Z. (2018). Application and research advances in epoxy asphalt concrete serving as deck pavement material. Materials Reports, 32(17), 2992–3009. http://doi.org/10.11896/j.issn.1005-023X.2018.17.013
  • Chen, C., Eisenhut, W. O., Lau, K., Buss, A., & Bors, J. (2018a). Performance characteristics of epoxy asphalt paving material for thin orthotropic steel plate decks. International Journal of Pavement Engineering, 21(3), 1–11. https://doi.org/10.1080/10298436.2018.1481961
  • Chen, L., Qian, Z., & Hu, H. (2013). Epoxy asphalt concrete protective course used on steel railway bridge. Construction and Building Materials, 41, 125–130. https://doi.org/10.1016/j.conbuildmat.2012.12.002
  • Chen, R., Gong, J., Jiang, Y., Wang, Q., Xi, Z., & Xie, H. (2018c). Halogen-free flame retarded cold-mix epoxy asphalt binders: Rheological, thermal and mechanical characterization. Construction and Building Materials, 186, 863–870. https://doi.org/10.1016/j.conbuildmat.2018.08.018
  • Chen, R., Zhao, R., Liu, Y., Xi, Z., Cai, J., Zhang, J., … Xie, H. (2021a). Development of eco-friendly fire-retarded warm-mix epoxy asphalt binders using reactive polymeric flame retardants for road tunnel pavements. Construction and Building Materials, 284, 122752. https://doi.org/10.1016/j.conbuildmat.2021.122752
  • Chen, X. (2009). On the fracture properties of epoxy asphalt mixture with SCB test. Taylor & Francis Group, ISBN 978-0-415-55854-9, London, UK, 531–540.
  • Chen, X., Qian, Z., Liu, X., & Lei, Z. (2012b). State of the art of asphalt surfacing on long-spanned orthotropic steel decks in China. Testing and Evaluation (ASTM), 40(7), 1252–1259. http://doi.org/10.1520/JTE20120133
  • Chen, Y., Hossiney, N., Yang, X., Wang, H., & You, Z. (2021b). Application of epoxy-asphalt composite in asphalt paving industry: A review with emphasis on physicochemical properties and pavement performances. Advances in Materials Science and Engineering, 2021, 1–35. Article ID 3454029. https://doi.org/10.1155/2021/3454029.
  • Chen, Z., Wang, T., Pei, J., Amirkhanian, S., Xiao, F., Ye, Q., & Fan, Z. (2019). Low temperature and fatigue characteristics of treated crumb rubber modified asphalt after a long-term aging procedure. Cleaner Production, 234, 1262–1274. https://doi.org/10.1016/j.jclepro.2019.06.147
  • Cong, P. (2009). Preparation and properties of asphalt and its mixtures. Wuhan University of Technology.
  • Cong, P., Chen, S., & Yu, J. (2011). Investigation of the properties of epoxy resin-modified asphalt mixtures for application to orthotropic bridge decks. Applied Polymer Science, 121(4), 2310–2316. https://doi.org/10.1002/app.33948
  • Cong, P., Jianying, Y., & Shuanfa, C. (2010). Effects of epoxy resin contents on the rheological properties of epoxy-asphalt blends. Applied Polymer Science, 118(6), 3678–3684. https://doi.org/10.1002/app.32440
  • Cong, P., Liu, N., Shang, H., & Zhao, H. (2015). Rheological and fatigue properties of epoxy asphalt binder. International Journal of Pavement Research and Technology, 8(5), 370–376. http://doi.org/10.6135/ijprt.org.tw/2015.8(5).370
  • Cong, P., Luo, W., Xu, P., & Zhang, Y. (2019). Chemical and physical properties of hot mixing epoxy asphalt binders. Construction and Building Materials, 198, 1–9. https://doi.org/10.1016/j.conbuildmat.2018.11.275
  • Cong, P., Yu, J., Wu, S., & Luo, X. (2008). Laboratory investigation of the properties of asphalt and its mixtures modified with flame retardant. Construction and Building Materials, 22(6), 1037–1042. https://doi.org/10.1016/j.conbuildmat.2007.03.012
  • CROW. (2011). D11-01: Specification for runway surface dressings on airfields. The Netherlands.
  • Crucho, J. M. L., de Picado-Santos, L. G., das Neves, J. M. C., & Capitão, S. D. (2020). The TEAGE ageing method for asphalt mixtures. Transportation Engineering, 2, 100030. https://doi.org/10.1016/j.treng.2020.100030
  • Cubuk, M., Gürü, M., & Çubuk, M. K. (2009). Improvement of bitumen performance with epoxy resin. Journal of Fuel, 88(7), 1324–1328. https://doi.org/10.1016/j.fuel.2008.12.024
  • Danish Road Institute (DRI). (2005). Noise reducing pavements in Japan (Study Tour Report). Technical Note 31, Dansih Ministry of Transport and Energy, Copenhagen, Denmark.
  • Devulapalli, L., Kothandaraman, S., & Sarang, G. (2021). Fracture characterization of stone matrix asphalt mixtures incorporating reclaimed asphalt pavement and rejuvenator. Journal of Materials in Civil Engineering, 33(11), 04021320. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003945
  • Dong, Z., & Li, L. P. (2015). Study on dynamic mechanical properties and microstructure of epoxy asphalt. In 2015 International Conference on Applied Science and Engineering Innovation. Atlantis Press.
  • Dubowik, D. A., & Ross, G. C. (2001). A novel waterborne epoxy resin for zero-void, two component coating. In 2000 International Waterborne High-Solids and Powder Coatings Symposium, New Orleans, USA.
  • EI Rahman, A. A., El-Shafie, M., & El Kholy, S. A. (2012). Modification of local asphalt with epoxy resin to be used in pavement. Egyptian Journal of Petroleum, 21(2), 139–147. https://doi.org/10.1016/j.ejpe.2012.11.006
  • Elwardany, M. D., Rad, F. Y., Castorena, C., & Richard Kim, Y. (2017). Evaluation of asphalt mixture laboratory long-term ageing methods for performance testing and prediction. Road Materials and Pavement Design, 18(1), 28–61. https://doi.org/10.1080/14680629.2016.1266740
  • Flintsch, G. W., de Leon, E., McGhee, K. K., & AI-Qadi, I. L. (2003). Pavement surface macrotexture measurement and applications. Transportation Research Record, 1860(1), 168–177. https://doi.org/10.3141/1860-19
  • Forrest, E. (2002). A 21st birthday treat for Humber Bridge. Construction News. http://www.cnplus.co.uk/news/a-21st-birthday-treat-for-humber-bridge/875234.article#.U_9HzfldXmd Accessed May 12, 2019.
  • Freudenstein, S. (2005). Modifications to getrac ballastless track approved. International Railway Journal, 45(3), 26–27.
  • Fuhaid, A. A., Lu, Q., & Luo, S. (2018). Laboratory evaluation of biobased epoxy asphalt binder for asphalt pavement. Materials in Civil Engineering (ASCE), 30(7), 1–8. http://doi.org/10.1061/(ASCE)MT.1943-5533.0002383
  • Gaul, R. W. (1996). Epoxy asphalt concrete–a polymer concrete with 25 years experience, properties and uses of polymers in concrete. In J. J. Fontana, O. Kaeding Al, & P. D. Krauss (Eds.), American concrete institute publication SP: 166, No. 13 (pp. 233–251).
  • Gendy, A. E., & Shalaby, A. (2007). Mean profile depth of pavement surface macrotexture using photometric stereo techniques. Transportation Engineering, 133(7), 433–440. https://doi.org/10.1061/(ASCE)0733-947X(2007)133:7(433)
  • Georgia Department of Transportation (GDT). (2011). Determining optimum asphalt content for open-graded bituminous paving mixtures. GDT 114, Atlanta (Georgia), USA.
  • Gingras, J. P., Tanguy, P. A., Mariotti, S., & Chaverot, P. (2005). Effect of process parameters on bitumen emulsions. Chemical Engineering and Processing: Process Intensification, 44(9), 979–986. https://doi.org/10.1016/j.cep.2005.01.003
  • Gong, J., Liu, Y., Wang, Q., Xi, Z., Cai, J., Ding, G., & Xie, H. (2019). Performance evaluation of warm mix asphalt additive modified epoxy asphalt rubbers. Construction and Building Materials, 204, 288–295. https://doi.org/10.1016/j.conbuildmat.2019.01.197
  • Haider, S. W., Mirza, M. W., Thottempudi, A. K., Bari, J., & Baladi, G. Y. (2011). Characterizing temperature susceptibility of asphalt binders using activation energy for flow. In Transportation and Development Institute Congress 2011: Integrated Transportation and Development for a Better Tomorrow, 493–503.
  • Hamzah, M. O., Omranian, S. R., Jamshidi, A., & Hasan, M. R. M. (2012). Simulating laboratory short term aging to suit Malaysian field conditions. World academy of science, Engineering and technology. International Journal of Civil, Architectural, Structural and Construction Engineering, 6(12), 117–121.
  • Han, C., Li, H., & Jia, Y. (2010). Research of epoxy asphalt steel deck pavement disease based on normal inspection. Highway Engineering, 1(36), 50–54 (In Chinese).
  • Herrington, P. R. (2010). Epoxy-modified porous asphalt, New Zealand Agency Transportation Report No.410, Wellington, New Zealand.
  • Herrington, P. R., & Alabaster, D. (2008). Epoxy modified open-graded porous asphalt. Road Materials and Pavement Design, 9(3), 481–498. https://doi.org/10.1080/14680629.2008.9690129
  • Hicks, C. G., Jacoben, K. F., & Hicks, R. G. (2012). Epoxy asphalt concrete (EAC) used to repave the Fremont bridge in Portland Oregon. Available from https://ine.uaf.edu/autc/files/2012/03/Hicks-Fremont-Bridge-Project-Write-Up-3-18-12-final-A-4.pdf
  • Hicks, R. G., Dussek, I. J., & Seim, C. (2000). Asphalt surfaces on steel bridge decks. Transportation Research Record, 1740(1), 135–142. https://doi.org/10.3141/1740-17
  • Holleran, G., Holleran, I., Bearsley, S., Dubois, C. J., & Wilson, D. (2017). Epoxy asphalt for durability of open graded mixes: part 1 performance approaches. In 17th AAPA International Flexible Pavements Conference, Australian Asphalt Paving Association, Melbourne, Australia, 13–16.
  • Hu, C., Zhao, J., Leng, Z., Partl, M. N., & Li, R. (2019a). Laboratory evaluation of waterborne epoxy bitumen emulsion for pavement preventative maintenance application. Construction and Building Materials, 197, 220–227. https://doi.org/10.1016/j.conbuildmat.2018.11.223
  • Hu, M., Li, L., & Peng, F. (2019b). Laboratory investigation of OGFC-5 porous asphalt ultra-thin wearing course. Construction and Building Materials, 219, 101–110.
  • Hu, J., Qian, Z., Xue, Y., & Yang, Y. (2016). Investigation on fracture performance of lightweight epoxy asphalt concrete based on microstructure characteristics. Materials in Civil Engineering (ASCE), 28(9), 04016084. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001594
  • Huang, K., Xia, J. L., & Ding, H. Y. (2010). Properties of thermosetting epoxy asphalt materials prepared from modified epoxy resin. Thermosetting Resin, 25(1), 35–39.
  • Huang, M., & Huang, W. (2011). Analyses of viscosity variation in solidifying procedure of epoxy asphalt. In Third International Conference on Transportation Engineering (ICTE) American Society of Civil Engineers China Communications and Transportation Association.
  • Huang, m., Wen, X., & Wang, L. (2017). Influence of foaming effect, operation time and health preserving properties of foam epoxy asphalt mixtures. Construction and Building Materials, 151, 931–938. https://doi.org/10.1016/j.conbuildmat.2017.06.083
  • Huang, Q., Qian, Z., Chen, L., Zhang, M., Zhang, X., Sun, J., & Hu, J. (2020). Evaluation of epoxy asphalt rubber with silane coupling agent used as tack coat for seasonally frozen orthotropic steel bridge decks. Construction and Building Materials, 241, 117957. https://doi.org/10.1016/j.conbuildmat.2019.117957
  • Huang, W. (2015). Integrated design procedure for epoxy asphalt concrete–based wearing surface on long-span orthotropic steel deck bridges. Materials in Civil Engineering (ASCE), 28(5), 04015189. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001470
  • Huang, W., Guo, W., & Wei, Y. (2019). Thermal effect on rheological properties of epoxy asphalt mixture and stress prediction for bridge deck paving. Materials in Civil Engineering (ASCE), 31(10), 04019222. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002861
  • Hulsey, J. L., Yang, L., & Raad, L. (1999). Wearing surfaces for orthotropic steel bridge decks. Transportation Research Record, 1654(1), 141–150. https://doi.org/10.3141/1654-17
  • Ismael, M., Fattah, M. Y., & Jasim, A. F. (2022). Permanent deformation characterization of stone matrix asphalt reinforced by different types of fibers. Journal of Engineering, 28(2), 99–116. https://doi.org/10.31026/j.eng.2022.02.07
  • Iwasaki, O. (1997). Field measurement and fatigue assessment of orthotropic steel deck with asphalt pavement. Structural Mechanics and Earthquake Engineering, 563-39(563), 161–171. https://doi.org/10.2208/jscej.1997.563_161
  • Jackson, M. B., Edmond, L. N., Varley, R. J., & Warden, P. G. (1993). Toughening epoxy resins with polyepichlorohydrin. Applied Polymer Science, 48(7), 1259–1269. https://doi.org/10.1002/app.1993.070480714
  • Jamshidi, A., Hamzah, M. O., & Aman, M. Y. (2012). Effects of Sasobit® content on the rheological characteristics of unaged and aged asphalt binders at high and intermediate temperatures. Materials Research, 15(4), 628–638. https://doi.org/10.1590/S1516-14392012005000083
  • Jamshidi, A., Hasan, M. R. M., Yao, H., You, Z., & Hamzah, M. O. (2015). Characterization of the rate of change of rheological properties of nano-modified asphalt. Construction and Building Materials, 98, 437–446. https://doi.org/10.1016/j.conbuildmat.2015.08.069
  • Jamshidi, A., Kurumisawa, K., Nawa, T., & Igarashi, T. (2016). Performance of pavements incorporating waste glass: The current state of the art. Renewable and Sustainable Energy Reviews, 64, 211–236. https://doi.org/10.1016/j.rser.2016.06.012
  • Jamshidi, A., Kurumisawa, K., Nawa, T., Jize, M., & White, G. (2017). Performance of pavements incorporating industrial byproducts: A state-of-the-art study. Cleaner Production, 164, 367–388. https://doi.org/10.1016/j.jclepro.2017.06.223
  • Jamshidi, A., White, G., Hosseinpour, M., Kurumisawa, K., & Hamzah, M. O. (2019). Characterization of effects of reclaimed asphalt pavement (RAP) source and content on dynamic modulus of hot mix asphalt concrete. Construction and Building Materials, 217, 487–497. https://doi.org/10.1016/j.conbuildmat.2019.05.059
  • Jamshidi, A., White, G., & Kurumisawa, K. (2021). Rheological characteristics of epoxy asphalt binders and engineering properties of epoxy asphalt mixtures–state-of-the-art. Road Materials and Pavement Design, 1–24. https://doi.org/10.1080/14680629.2021.1963814
  • Japan Road Association. (2006). Evaluation methods for pavement performance, Tokyo, Japan. (In Japanese).
  • Japan Road Association. (2009). Guidebook for eco-friendly pavement technologies, Tokyo, Japan. (In Japanese).
  • Jia, X., Huang, B., Chen, S., & Shi, D. (2016). Comparative investigation into field performance of steel bridge deck asphalt overlay systems. KSCE Journal of Civil Engineering, 20(7), 2755–2764. https://doi.org/10.1007/s12205-016-0259-1
  • Jin, J., Xiao, T., Tan, Y., Zheng, J., Liu, R., Qian, G., … Zhang, J. (2018). Effects of TiO2 pillared montmorillonite nanocomposites on the properties of asphalt with exhaust catalytic capacity. Cleaner Production, 205, 339–349. https://doi.org/10.1016/j.jclepro.2018.08.251
  • Joseph, A. H. (1965). Behavior of epoxy-asphalt airfield pavements 1963 inspections. Miscellaneous Paper No. 4–704, USA Army Engineer Waterways Experiment Station, Corps of Engineers, Vicksburg, Mississippi, USA.
  • Kandhal, P. S., & Mallick, R. B. (1998). Open graded friction course: state of the practice. Transportation Research Board, National Research Council, Washington D.C. USA.
  • Katagiri, H., Maeno, H., Tokumitsu, K., & Iida, R. (2010). Application of epoxy asphalt mixture to the binder course in orthotropic steel deck pavement. 11th International Symposium of Asphalt Pavements (ISAP), Nagoya, Japan.
  • Kawakami, A., & Kubo, K. (2008). Accelerated loading test on durability of cool pavement in PWRI. In the 3rd International Conference on Accelerated Pavement Testing, Madrid, Spain, 1–25.
  • Ke, X. (2008). Preparation and properties of epoxy modified asphalt. Master Thesis, Wuhan University of Technology, Wuhan, China.
  • Khattak, M. J., & Alrashidi, M. (2013). Performance of preventive maintenance treatments of flexible pavements. International Journal of Pavement Research and Technology, 6(3), 184–196. https://doi.org/10.6135/ijprt.org.tw/2013.6(3).184
  • Kim, D. S., Cho, K., Kim, J. K., & Park, C. E. (1996). Effects of particle size and rubber content on fracture toughness in rubber-modified epoxies. Polymer Engineering & Science, 36(6), 755–768. https://doi.org/10.1002/pen.10463
  • Kim, J. S., Chin, I. J., & Lee, B. S. (2000). Curing of DGEBA epoxy with modified low- temperature curing agents, Environmental Sciences and Pollution Management, Seoul, Korea.
  • Kim, T. W., Baek, J., Lee, H. J., & Lee, S. Y. (2014). Effect of pavement design parameters on the behaviour of orthotropic steel bridge deck pavements under traffic loading. International Journal of Pavement Engineering, 15(5), 471–482. https://doi.org/10.1080/10298436.2013.839790
  • Kubo, K. (2011a). Present status of porous elastic rubber (PERS) in Japan. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Vol: (4), Institute of Noise Control Engineering, Osaka, Japan, 3147–3153.
  • Kubo, K., Terada, M., & Watanabe, K. (2011b). Evaluation methods of road surface performance in Japan, In The 3rd International Road Surface Friction Conference, Gold Coast, Australia, 1–12.
  • Laxal, J. (2013). Orthotropic deck wear surface system selection lions gate bridge north approach viaduct, Vancouver BC. In The Conference and Exhibition of the Transportation Association of Canada-Transportation: Better-Faster-Safer, Winnipeg, Manitoba, Canada.
  • Lee, S. H., Hsiao, T. Y., & Lee, G. S. (2015). Audio–vocal responses of vocal fundamental frequency and formant during sustained vowel vocalizations in different noises. Hearing Research, 324, 1–6. https://doi.org/10.1016/j.heares.2015.02.005
  • Leng, Z., & Yu, H. (2016). Novel method of coating titanium dioxide on to asphalt mixture based on the breath figure process for air-purifying purpose. Materials in Civil Engineering (ASCE), 28(5), 04015188. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001478
  • Li, H. (2012). Evaluation of cool pavement strategies for heat island mitigation. University of California, Davis.
  • Li, H., Guan, Y., & Jia, Y. (2010). Research on long-term behavior of epoxy asphalt deck surfacing. Chinese and Foreign Highway, 6(30), 230–233.
  • Li, M., Min, Z., Wang, Q., Huang, W., & Shi, Z. (2022a). Effect of epoxy resin content and conversion rate on the compatibility and component distribution of epoxy asphalt: A MD simulation study. Construction and Building Materials, 319, 126050. https://doi.org/10.1016/j.conbuildmat.2021.126050
  • Li, Q., Ding, H., Rahman, A., & He, D. (2016). Evaluation of Basic Oxygen Furnace (BOF) material into slag-based asphalt concrete to be used in railway substructure. Construction and Building Materials, 115, 593–601. https://doi.org/10.1016/j.conbuildmat.2016.04.085
  • Li, R., Leng, Z., Zhang, Y., & Ma, X. (2019). Preparation and characterization of waterborne epoxy modified bitumen emulsion as a potential high-performance cold binder. Cleaner Production, 235, 1265–1275. https://doi.org/10.1016/j.jclepro.2019.06.267
  • Li, X., Shen, J., Ling, T., & Yuan, F. (2022b). Fatigue properties of aged porous asphalt mixtures with an epoxy asphalt binder. Materials in Civil Engineering (ASCE), 34(3), 04021488. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004130
  • Liao, M., & Luo, R. (2022). Influencing factors and mechanisms of blistering in epoxy asphalt mixtures for steel deck pavements. Construction and Building Materials, 316, 126036. https://doi.org/10.1016/j.conbuildmat.2021.126036
  • Liu, W., Wang, S., Zhang, J., & Fan, J. (2015). Photocatalytic degradation of vehicle exhausts on asphalt pavement by TiO2/rubber composite structure. Construction and Building Materials, 81, 224–232. https://doi.org/10.1016/j.conbuildmat.2015.02.034
  • Liu, Y., Qian, Z. D., Zheng, D., & Huang, Q. B. (2018). Evaluation of epoxy asphalt-based concrete substructure for high-speed railway ballastless track. Construction and Building Materials, 162, 229–238. https://doi.org/10.1016/j.conbuildmat.2017.12.028
  • Lu, Q., & Bors, J. (2015). Alternate uses of epoxy asphalt on bridge decks and roadways. Construction and Building Materials, 78, 18–25. https://doi.org/10.1016/j.conbuildmat.2014.12.125
  • Lu, Q., Kohler, E., Harvey, J., & Ongel, A. (2009). Investigation of noise and durability performance trends for asphaltic pavement surface types: three-year results. California: University of California Pavement Research Center; 2009 [UCPRC-RR-2009-01].
  • Lu, Q., Xin, C., Alamri, M., & Alharthai, M. (2021). Development of porous asphalt mixture with bio-based epoxy asphalt. Cleaner Production, 317, 128404 . https://doi.org/10.1016/j.jclepro.2021.128404
  • Lu, W. M. (1994). Research and application of epoxy asphalt concrete material at home and abroad. Chinese Petroleum Asphalt, 3, 11–15. (In Chinese).
  • Lu, W. M., Guo, Z. Y., Wang, X. L., & Li, J. H. (1996). Characteristic performance and application of cold mix epoxy asphalt. East China Highway, 2(Total No. 99), 64–68.
  • Luo, S., Lu, Q., & Qian, Z. (2015). Performance evaluation of epoxy modified open-graded porous asphalt concrete. Construction and Building Materials, 76, 97–102. https://doi.org/10.1016/j.conbuildmat.2014.11.057
  • Luo, S., Qian, Z. D., & Harvey, J. (2013). Experiment on fatigue damage characteristics of epoxy asphalt mixture. China Journal of Highway and Transport, 26(2), 20–25.
  • Maggenti, R., & Shatnawi, S. (2017). Initial and replacement riding surface for the orthotropic San Mateo/Hayward Bridge. Bridge Structures, 13(2–3), 81–92. https://doi.org/10.3233/BRS-170116
  • Mamlouk, M. S., & Dosa, M. (2014). Verification of effectiveness of chip seal as a pavement preventive maintenance treatment using LTPP data. International Journal of Pavement Engineering, 15(10), 879–888. https://doi.org/10.1080/10298436.2014.893318
  • Mangus, A. R., & Sun, S. (2000). Orthotropic deck bridges. In W.-F. Chen, & L. Duan (Eds.), Bridge engineering handbook. CRC Press.
  • Matsukawa, K., Minato, S., & Fumiko, K. (1983). Study on the strain behaviour of the steel plate deck pavement using epoxy Asphalt concrete, In Proceeding of 15th Japan Road Congress, Tokyo, Japan, 385–386.
  • Miao, Y., Wang, S., Sun, F., & Yang, J. (2022). A laboratory investigation into the polishing behavior of stone matrix asphalt with different lithology types of coarse aggregates. Journal of Testing and Evaluation, 50(5). https://doi.org/10.1520/JTE20210266
  • Miller, J. S., & Bellinger, W. Y. (2003). Distress identification manual for the long-term pavement performance program. Rep. No. FHWARD- 03-031, Federal Highway Administration, Washington, DC, USA.
  • Min, Z., Sun, L., Wang, Q., & Yu, Z. (2020). Influence of aggregate packing on the performance of uncured and cured epoxy asphalt mixtures. Materials in Civil Engineering (ASCE), 32(5), 04020103. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003149
  • Min, Z., Xia, Y., Li, X., & Tao, Z. (2017). Performances evaluation of epoxy asphalt mixture containing snow-melting agent. Construction and Building Materials, 155, 762–769. https://doi.org/10.1016/j.conbuildmat.2017.08.009
  • Min, Z., Zhou, L., Wang, Q., & Zhang, Y. (2019). Performance evaluation of epoxy-asphalt mixture blended with glass aggregate. Materials in Civil Engineering (ASCE), 31(6), 04019083. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002731
  • Mirwald, J., Maschauer, D., Hofko, B., & Grothe, H. (2020). Impact of reactive oxygen species on bitumen aging–the Viennese binder aging method. Construction and Building Materials, 257, 119495. https://doi.org/10.1016/j.conbuildmat.2020.119495
  • Mitchell, J. W. (2014). The history and future trends of non-halogenated flame retarded polymers. In A. B. Morgan, & C. A. Wilkie (Eds.), Non-halogenated flame-retardant handbook (pp. 1–16). John Wiley & Sons, Inc.
  • Mo, L. T., Fang, X., Yan, D. P., Huurman, M., & Wu, S. P. (2012). Investigation of mechanical properties of thin epoxy polymer overlay materials upon orthotropic steel bridge decks. Construction and Building Materials, 33, 41–47. https://doi.org/10.1016/j.conbuildmat.2012.01.010
  • Momoya, Y., & Sekine, E. (2004). Reinforced roadbed deformation characteristics under moving wheel loads. Quarterly Report of RTRI, 45(3), 162–168. https://doi.org/10.2219/rtriqr.45.162
  • Moriyoshi, A., Jin, T., Nakai, T., Ishikawa, H., Tokumitsu, K., & Kasahara, A. (2014). Construction and pavement properties after seven years in porous asphalt with long life. Construction and Building Materials, 50, 401–413. https://doi.org/10.1016/j.conbuildmat.2013.09.023
  • Morrison, G. R., & Hesp, S. A. M. (1995). A new look at rubber-modified asphalt binders. Materials Science, 30(10), 2584–2590. https://doi.org/10.1007/BF00362138
  • Nai-sheng, G., Ying-hua, Z., & Lue-lun, S. (2006). Effect of fiber contents on toughness of polyester fiber asphalt concrete. Traffic and Transportation Engineering, 4(6), 32–35.
  • Nguyen, Q. T., & Tran, T. C. H. (2021). Experimental investigation of fatigue behavior for polymer modified asphalt and epoxy asphalt mixtures. In Proceedings of the 3rd International Conference on Sustainability in Civil Engineering, Springer, Singapore, 161–166.
  • Nicholas, R. F. (2009). Comparison of macrotexture measurement methods, civil and environmental engineering and geodetic science. Master Thesis, The Ohio State University, USA.
  • Nie, W., Wang, D., Sun, Y., Xu, W., & Xiao, X. (2022). Integrated design of structure and material of epoxy asphalt mixture used in steel bridge deck pavement. Buildings, 12(1), 9. https://doi.org/10.3390/buildings12010009
  • Nunn, M. E., Brown, A., Weston, D., & Nicholls, J. C. (1997). Design of long-life flexible pavements for heavy traffic. Transportation Research Laboratory, ISSN 0968-4107.
  • Oden, J. T., & Martins, J. A. C. (1985). Models and computational methods for dynamic friction phenomena. Computer Methods in Applied Mechanics and Engineering, 52(1–3), 527–634. https://doi.org/10.1016/0045-7825(85)90009-X
  • Ongel, A., Harvey, J., Kohler, E., Lu, Q., & Steven, B. (2008). Investigation of noise, durability, permeability, and friction performance trends for asphaltic pavement surface mix types: first- and second-year results. California: University of California Pavement Research Centre [UCPRC-RR-2007-03].
  • Pack, S. (2015). A review of non-halogen flame retardants in epoxy-based composites and nanocomposites: Flame retardancy and rheological properties. In P. M. Visakh, & Y. Arao (Eds.), Flame retardants: Polymer blends, composites and nanocomposites (pp. 115–130). Springer International Publishing.
  • Possehl Spezialbau. (2022). POSSEHL ANTISKID®: The special High-Friction Surface for takeoff and landing runways, available through https://www.possehl-spezialbau.de/fileadmin/Download/Prospekte/POSSEHL_Folder_Antiskid_E_0417_w.pdf
  • Put, R. (2006). Managing the risks of an international brand name. Master Thesis, University of Twente, Netherland.
  • Qian, Z., Chen, C., Jiang, C., & de Fortier Smit, A. (2013). Development of a lightweight epoxy asphalt mixture for bridge decks. Construction and Building Materials, 48, 516–520. https://doi.org/10.1016/j.conbuildmat.2013.06.096
  • Qian, Z., Chen, L., Jiang, C., & Luo, S. (2011). Performance evaluation of a lightweight epoxy asphalt mixture for bascule bridge pavements. Construction and Building Materials, 25(7), 3117–3122. https://doi.org/10.1016/j.conbuildmat.2010.12.030
  • Qian, Z., & Lu, Q. (2014). Design and laboratory evaluation of small particle porous epoxy asphalt concrete (No. 14-2354). In Transportation Research Record, Washington DC, USA.
  • Qian, Z., & Lu, Q. (2015). Design and laboratory evaluation of small particle porous epoxy asphalt surface mixture for roadway pavements. Construction and Building Materials, 77, 110–116. https://doi.org/10.1016/j.conbuildmat.2014.12.056
  • Qian, Z. D., Wang, J. Y., Chen, L. L., & Wang, L. B. (2014). Three-dimensional discrete element modelling of crack development in epoxy asphalt concrete. Testing and Evaluation (ASTM), 43(2), 1–13. https://doi.org/10.1520/JTE20140086
  • Read, J., Whiteoak, D., & Hunter, R. N. (2016). The shell bitumen handbook. Thomas Telford Publication.
  • Rebbechi, J., & Lancaster, J. (1994). Resurfacing of steel bridge decks. Conference Proceedings: 9th Australian Asphalt Pavement Association (AAPA). In International Asphalt Conference, Surfers Paradise, Queensland, Australia.
  • Rebbechi, J. J. (1980). Epoxy asphalt surfacing of West Gate Bridge. In Proceedings of the 10th Australian Road Research Board Conference, Sydney, Australia, Vol. 10, Part 3, 136–146.
  • Ren, R., Zhang, X., Z, X., Wei, Z., Chen, J., D, J., Dong, D., Li, X., L, X., & Zhang, L. (2013). Effect of particle size and content of magnesium hydroxide on flame retardant properties of asphalt. Applied Polymer Science, 129(4), 2261–2272. https://doi.org/10.1002/app.38960
  • Ren, S., Liu, X., Lin, P., Jing, R., & Erkens, S. (2022). Toward the long-term aging influence and novel reaction kinetics models of bitumen. International Journal of Pavement Engineering, 1–16. https://doi.org/10.1080/10298436.2021.2024188
  • Rooijen, V., & De Bondt, C. (2004). Performance evaluation of jet fuel resistant polymer-modified asphalt for airport pavements. In Federal Aviation Administration Worldwide Airport Transfer Conference, Washington DC, USA.
  • Rossi, F., Castellani, B., Presciutti, A., Morini, E., Anderini, E., Filipponi, M., & Nicolini, A. (2016). Experimental evaluation of urban heat island mitigation potential of retro-reflective pavement in urban canyons. Energy and Buildings, 126, 340–352. https://doi.org/10.1016/j.enbuild.2016.05.036
  • Saed, S. A., Kamboozia, N., & Mousavi Rad, S. (2022). Performance evaluation of stone matrix asphalt mixtures and low-temperature properties of asphalt binders containing reclaimed asphalt pavement materials modified with nanosilica. Journal of Materials in Civil Engineering, 34(1), 04021380. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004016
  • Sang, L. U. O., & Zhen-dong, Q. I. A. N. (2012). Experimental research on surface characteristics of epoxy asphalt concrete pavement. Beijing University of Technology.
  • Seim, C. (1979). An Innovative Pavement System for Long Span Bridge Decks. In Preprint 3771, American Society of Civil Engineering (ASCE), Convention, Atlanta, GA, USA.
  • Seim, C., & Ingham, T. (2004). Influence of wearing surfacing on performance of orthotropic steel plate decks. Transportation Research Record, 1892(1), 98–106. https://doi.org/10.3141/1892-11
  • Shao, W. X., & Zhou, B. J. (2021, June). Study on performance of new type cold mix epoxy asphalt and mixture for steel deck pavement. In IOP Conference Series: Earth and Environmental Science (Vol. 787, No. 1, p. 012004). IOP Publishing.
  • Si, J., Jia, Z., Wanga, J., Yu, X., Li, Y., Dong, F., & Jiang, R. (2018). Comparative analysis of cold-mixed epoxy and epoxy SBS-modified asphalts: Curing rheology, thermal, and mechanical properties. Construction and Building Materials, 176, 165–171. https://doi.org/10.1016/j.conbuildmat.2018.05.035
  • Si, J., Wang, J., Yu, X., Ding, G., Ruan, W., Xing, M., & Xie, R. (2022). Influence of thermal-oxidative aging on the mechanical performance and structure of cold-mixed epoxy asphalt. Cleaner Production, 337, 130482 . https://doi.org/10.1016/j.jclepro.2022.130482
  • Simpson, W. C., Sommer, H. J., Griffin, R. L., & Miles, T. K. (1960). Epoxy asphalt concrete for airfield pavements. Journal of the Air Transport division, Proceedings of the American Society of Civil Engineer, 86(AT 1), 57–71.
  • SP-1. (2001). Superpave performance graded asphalt binder specifications and testing, Superpave Series. Lexington, KY, USA.
  • SP-2. (2000). Superpave mix design, Superpave Series. Lexington, KY, USA.
  • Steiner, D., Hofko, B., Hospodka, M., Handle, F., Grothe, H., Füssl, J., … Blab, R. (2016). Towards an optimised lab procedure for long-term oxidative ageing of asphalt mix specimen. International Journal of Pavement Engineering, 17(6), 471–477. https://doi.org/10.1080/10298436.2014.993204
  • Sun, X., Qin, X., Chen, Q., & Ma, Q. (2018b). Investigation of enhancing effect and mechanism of basalt fiber on toughness of asphalt material. Petroleum Science and Technology, 36(20), 1710–1717. https://doi.org/10.1080/10916466.2018.1506805
  • Sun, Y., Liu, Y., Gong, J., Han, X., Xi, Z., Zhang, J., … Xie, H. (2021). Thermal and bonding properties of epoxy asphalt bond coats. Journal of Thermal Analysis and Calorimetry, 147, 1–13. https://doi.org/10.1007/s10973-021-10630-8
  • Šušteršič, E., Tušar, M., & Zupanc, A. (2014). Valant, asphalt concrete modification with waste PMMA/ATH. Materials and Structure, 47(11), 1817–1824. https://doi.org/10.1617/s11527-013-0152-z
  • Takahashi, M., Shimazaki, M., & Aoki, M. (2010). Applicability of bright-colored epoxy asphalt mixture for repair of concrete pavements in tunnels. In 11th International Symposium of Asphalt Pavements (ISAP), Nagoya, Japan.
  • Taniguchi, S., Ito, M., Nomura, T., & Abe, T. (2003). Developments a study on creating method of performance curve using pavement data base in MLIT-PMS. Pavement Engineering, Japan Society of Civil Engineering (JSCE), Tokyo, Japan.
  • Toan, D. V. (2005). Runway friction performance in NZ. In International conference on surface friction for road and runways, Christchurch, New Zealand.
  • Toro, C., Jobson, B. T., Haselbach, L., Shen, S., & Chung, S. H. (2016). Photoactive roadways: Determination of CO, NO and VOC uptake coefficients and photolabile side product yields on TiO2 treated asphalt and concrete. Atmospheric Environment, 139, 37–45. https://doi.org/10.1016/j.atmosenv.2016.05.007
  • Touran, A., & Okereke, A. (1991). Performance of orthotropic bridge decks. Performance of Constructed Facilities, 5(2), 134–148. https://doi.org/10.1061/(ASCE)0887-3828(1991)5:2(134)
  • Tran, N., Powell, B., Marks, H., West, R., & Kvasnak, A. (2009). Strategies for design and construction of high-reflectance asphalt pavements. Transportation Research Record, 2098(1), 124–130. https://doi.org/10.3141/2098-13
  • Van Leest, A. J., & Gaarkeuken, G. (2005). The F.O.D. resistance of surface layers on airfields in the Netherlands; in situ and laboratory testing. In FAA Airport Technology Transfer Conference, Atlantic City, NJ, USA.
  • Vyrozhemskyi, V., Kopynets, I., Kischynski, S., & Bidnenko, N. (2017). Epoxy asphalt concrete is a perspective material for the construction of roads, IOP Conference Series: Materials Science and Engineering. Building up Efficient and Sustainable Transport Infrastructure (BESTInfra2017), Prague, Czech Republic.
  • Wan, J., Gan, B., Li, C., Molina-Aldareguia, J., Li, Z., Wang, X., & Wang, D. Y. (2015). A novel biobased epoxy resin with high mechanical stiffness and low flammability: Synthesis, characterization and properties. Materials Chemistry A, 3(43), 21907–21921. https://doi.org/10.1039/C5TA02939B
  • Wang, D., Leng, Z., Hüben, M., Oeser, M., & Steinauer, B. (2016). Photocatalytic pavements with epoxy-bonded TiO2-containing spreading material. Construction and Building Materials, 107, 44–51. https://doi.org/10.1016/j.conbuildmat.2015.12.164
  • Wang, H., Al-Qadi, I. L., & Stanciulescu, I. (2010). Effect of friction on rolling tire – pavement interaction, in: USDOT Region V Regional University Transportation Center Final Report, Washington DC, USA.
  • Wang, X., Ma, B., Chen, S., Wei, K., & Kang, X. (2021). Properties of epoxy-resin binders and feasibility of their application in pavement mixtures. Construction and Building Materials, 295, 123531. https://doi.org/10.1016/j.conbuildmat.2021.123531
  • Wang, X., Wu, R., & Zhang, L. (2019). Development and performance evaluation of epoxy asphalt concrete modified with glass fibre. Materials and Pavement Design, 20(3), 715–726. https://doi.org/10.1080/14680629.2017.1413006
  • Wang, Z., & Zhang, S. (2018). Fatigue endurance limit of epoxy asphalt concrete pavement on the deck of long-span steel bridge. International Journal of Pavement Research and Technology, 11(4), 408–415. https://doi.org/10.1016/j.ijprt.2017.12.004
  • Weil, E. D., & Levchik, S. V. (2016). Flame retardants for plastics and textiles: Practical applications, second ed. Hanser Publishers.
  • White, G. (2017). Airfield pavement essentials. Airport Practice Note 12, Australian Airport Association, Canberra, Australia.
  • Widyatmoko, I., Elliott, R. C., & Lloyd, W. G. (2006b). Development of long-life deformation resistant hot rolled asphalt surfacing. Asphalt Professional, 18, ISSN 1479-6341.
  • Widyatmoko, I., Zhao, B., Elliot, R. C., & Lloyd, W. G. (2006a). Curing characteristics and the performance and durability of epoxy asphalts. In Proceedings of the 10th Conference on Asphalt Pavements, Quebec, Canada, 12–17.
  • Wu, J., Wang, X., Wang, L., Zhang, L., Xiao, Q., & Yang, H. (2020). Temperature correction and analysis of pavement skid resistance performance based on riohtrack full-scale track. Coatings, 10(9), 832. https://doi.org/10.3390/coatings10090832
  • Wu, J. P., Herrington, P. R., & Alabaster, D. (2017). Long-term durability of epoxy-modified open-graded porous asphalt wearing course. International Journal of Pavement Engineering, 20(8), 920–927. https://doi.org/10.1080/10298436.2017.1366764
  • Xiang, Q., & Xiao, F. (2020). Applications of epoxy materials in pavement engineering. Construction and Building Materials, 235, 117529. https://doi.org/10.1016/j.conbuildmat.2019.117529
  • Xiao, Y., Van de Ven, M. F. C., Molenaar, A. A. A., Su, Z., & Chang, K. (2013). Design approach for epoxy modified bitumen to be used in antiskid surfaces on asphalt pavement. Construction and Building Materials, 41, 516–525. https://doi.org/10.1016/j.conbuildmat.2012.12.047
  • Xiaoning, Z., Shunxian, Z., & Wei, X. (2012). Application performance-based design of epoxy asphalt concrete applied to steel bridge deck pavement. Southern China University Technology, (Nat. Sci. Ed.), 40(7), 1–7.
  • Xu, J., Ma, B., Mao, W., & Wang, X. (2021). Strength characteristics and prediction of epoxy resin pavement mixture. Construction and Building Materials, 283, 122682. https://doi.org/10.1016/j.conbuildmat.2021.122682
  • Xu, P., Cong, P., Li, D., & Zhu, X. (2016). Toughness modification of hyperbranched polyester on epoxy asphalt. Construction and Building Materials, 122, 473–477. https://doi.org/10.1016/j.conbuildmat.2016.06.087
  • Xu, P., Du, X., Cong, P., & Zhou, Z. (2022). Properties of paving epoxy asphalt with epoxy-terminated hyperbranched polyester. Road Materials and Pavement Design, 23(1), 234–246. https://doi.org/10.1080/14680629.2020.1826342
  • Xu, P., Zhu, X., Cong, P., Du, X., & Zhang, R. (2018). Modification of alkyl group terminated hyperbranched polyester on paving epoxy asphalt. Construction and Building Materials, 165, 295–302. https://doi.org/10.1016/j.conbuildmat.2017.12.182
  • Xu, T., Huang, X., & Zhao, Y. (2011). Investigation into the properties of asphalt mixtures containing magnesium hydroxide flame retardant. Fire Safety, 46(6), 330–334. https://doi.org/10.1016/j.firesaf.2011.05.001
  • Xu, X., Yang, X., Huang, W., Xiang, H., & Yang, W. (2019). New damage evolution law for steel–asphalt concrete composite pavement considering wheel load and temperature variation. Materials, 12(22), 3723. https://doi.org/10.3390/ma12223723
  • Xue, Y., & Qian, Z. (2016). Development and performance evaluation of epoxy asphalt concrete modified with mineral fiber. Construction and Building Materials, 102, 378–383. https://doi.org/10.1016/j.conbuildmat.2015.10.157
  • Yang, Y., Qian, Z., & Song, X. (2015). A pothole patching material for epoxy asphalt pavement on steel bridges: Fatigue test and numerical analysis. Construction and Building Materials, 94, 299–305. https://doi.org/10.1016/j.conbuildmat.2015.07.017
  • Yao, B., Xiao, W., & Cheng, C. (2013). Research on the dynamic bending behavior of a composite beam model for the asphalt overlay on steel bridge deck. In Transportation Research Board 92th Annual Meeting, Washington, USA.
  • Yao, B., Chen, C., & Loh, K. J. (2019). Performance characteristics of diluted epoxy asphalt binders and their potential application in chip seal. Materials in Civil Engineering (ASCE), 31(12), 04019290. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002943
  • Yao, B., Li, F., & Chen, J. (2016). Experimental study on the low temperature performance of an epoxy asphalt binder and mixture. In Fourth Geo-China International Conference Shandong University Shandong Department of Transportation University of Oklahoma, Chinese National Science Foundation, American Society of Civil Engineers (ASCE), Shandong, China.
  • Yi, X., Chen, H., Wang, H., Shi, C., & Yang, J. (2022). The feasibility of using epoxy asphalt to recycle a mixture containing 100% reclaimed asphalt pavement (RAP). Construction and Building Materials, 319(2022), 126122. https://doi.org/10.1016/j.conbuildmat.2021.126122
  • Yin, C., Zhang, H., & Pan, Y. (2016). Cracking mechanism and repair techniques of epoxy asphalt on steel bridge deck pavement. Transportation Research Record, 2550(1), 123–130. https://doi.org/10.3141/2550-16
  • Yin, H., Zhang, Y., Sun, Y., Xu, W., Yu, D., Xie, H., & Cheng, R. (2015). Performance of hot mix epoxy asphalt binder and its concrete. Materials and Structures, 48(11), 3825–3835. https://doi.org/10.1617/s11527-014-0442-0
  • Young, L. M., & Durham, S. A. (2012). Performance of an anti-icing epoxy overlay on asphalt surfaces. Performance of Constructed Facilities, 27(6), 836–840. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000373
  • Yu, J., Cong, P., & Wu, S. (2009a). Laboratory investigation of the properties of asphalt modified with epoxy resin. Applied Polymer Science, 113(6), 3557–3563. https://doi.org/10.1002/app.30324
  • Yu, J., Cong, P., & Wu, S. (2009b). Investigation of the properties of asphalt and its mixtures containing flame retardant modifier. Construction and Building Materials, 23(6), 2277–2282. https://doi.org/10.1016/j.conbuildmat.2008.11.013
  • Zegard, A., Smal, L., Naus, R., Apostolidis, P., Liu, X., van de Ven, M., … Scarpas, A. (2019). Field trials with epoxy asphalt for surfacing layers: province of North Holland case study. In Transportation Research Board 98th Annual Meeting. Transportation Research Board (TRB).Washington DC, USA.
  • Zhang, H., Hao, P. W., & Zhang, H. W. (2016b). Initiation and propagation mechanism of blisters on the epoxy asphalt concrete paving course of steel deck bridge pavement. Beijing University of Technology, 42(5), 737–741.
  • Zhang, H., Yu, J., & Zhu, C. (2015). Flame retardants in bitumens and nanocomposites. In: P.M.
  • Zhang, Q., Xu, Y.-H., & WenbIn, Z.-G. (2017). Influence of water-borne epoxy resin content on performance of waterborne epoxy resin compound SBR modified emulsified asphalt for tack coat. Construction and Building Materials, 153, 774–782. https://doi.org/10.1016/j.conbuildmat.2017.07.148
  • Zhang, X., Sühring, R., Serodio, D., Bonnell, M., Sundin, N., & Diamond, M. L. (2016a). Novel flame retardants: Estimating the physical–chemical properties and environmental fate of 94 halogenated and organophosphate PBDE replacements. Chemosphere, 144, 2401–2407. https://doi.org/10.1016/j.chemosphere.2015.11.017
  • Zhang, X. F., Qian, Z. D., & Gao, H. (2018b). Life-Cycle environmental impact assessment of steel bridge deck pavement. In Developments in International Bridge Engineering: Istanbul Bridge Conference, Istanbul, Turkey, 223–233.
  • Zhang, Y., Pan, X., Sun, Y., Xu, W., Pan, Y., Xie, H., & Rongshi, C. (2014b). Flame retardancy, thermal, and mechanical properties of mixed flame-retardant modified epoxy asphalt binders. Construction and Building Materials, 68, 62–67. https://doi.org/10.1016/j.conbuildmat.2014.06.028
  • Zhang, Y. H., Qian, Z. D., Chen, L. L., Liu, Y., Zhang, H., & Zhang, X. (2022). Impact of train vibration on physical and mechanical properties of epoxy asphalt concrete in the road-railway bridge. Construction and Building Materials, 317, 125637. https://doi.org/10.1016/j.conbuildmat.2021.125637
  • Zhang, Z., Wang, S., & Lu, G. (2018a). Properties of new cold patch asphalt liquid and mixture modified with waterborne epoxy resin. International Journal of Pavement Engineering, 21(13), 1–11. https://doi.org/10.1080/10298436.2018.1559314
  • Zhao, Y., Jiang, J., Ni, F., & Zhou, L. (2019). Fatigue cracking resistance of engineered cementitious composites (ecc) under working condition of orthotropic steel bridge decks pavement. Applied Sciences, 9(17), 3577. https://doi.org/10.3390/app9173577
  • Zheng, D., Qian, Z. D., Liu, Y., & Liu, C. B. (2018). Prediction and sensitivity analysis of long-term skid resistance of epoxy asphalt mixture based on GA-BP neural network. Construction and Building Materials, 158, 614–623. https://doi.org/10.1016/j.conbuildmat.2017.10.056
  • Zheng, W. (2015). Research on deployment technology and performance of epoxy asphalt and thermoplastic bitumen. Master Thesis, Southeast University, Nanjing, China.
  • Zhong, K., Yang, X., & Wei, X. (2017). Investigation on surface characteristics of epoxy asphalt concrete pavement. International Journal of Pavement Research and Technology, 10(6), 545–552. https://doi.org/10.1016/j.ijprt.2017.07.009
  • Zhu, C. (2013). Japan TAF epoxy asphalt concrete design and steel bridge deck pavement construction technology. Applied Mechanics and Materials. Transportation Technical Publications, Genev, Switzerland, 330, 905–910. https://doi.org/10.4028/www.scientific.net/AMM.330.905
  • Zhu, J., Chen, Z., Min, Z., Huang, W., & Wang, J. (2004). Study on epoxy resin modified asphalt materials for highway. South East University (Natural Science Edition), 7(3), 515–517.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.