203
Views
6
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Influence of Al3Ni crystallisation origin particles on hot deformation behaviour of aluminium based alloys

, , , , &
Pages 572-590 | Received 01 Jul 2016, Accepted 07 Dec 2016, Published online: 03 Jan 2017
 

Abstract

Binary Al–Ni, Al–Mg and ternary Al–Mg–Ni alloys containing various dispersions and volume fraction of second-phase particles of crystallisation origin were compressed in a temperature range of 200–500 °C and at strain rates of 0.1, 1, 10, 30 s−1 using the Gleeble 3800 thermomechanical simulator. Verification of axisymmetric compression tests was made by finite-element modelling. Constitutive models of hot deformation were constructed and effective activation energy of hot deformation was determined. It was found that the flow stress is lowered by decreasing the Al3Ni particle size in case of a low 0.03 volume fraction of particles in binary Al–Ni alloys. Intensive softening at large strains was achieved in the alloy with a 0.1 volume fraction of fine Al3Ni particles. Microstructure investigations confirmed that softening is a result of the dynamic restoration processes which were accelerated by fine particles. In contrast, the size of the particles had no influence on the flow stress of ternary Al–Mg–Ni alloy due to significant work hardening of the aluminium solid solution. Atoms of Mg in the aluminium solid solution significantly affect the deformation process and lead to the growth of the effective activation energy from 130–150 kJ/mol in the binary Al–Ni alloys to 170–190 kJ/mol in the ternary Al–Mg–Ni alloy.

Acknowledgements

The authors gratefully acknowledge the financial support of the Ministry of Education and Science of the Russian Federation in the framework of the Programme aimed to increase the competitiveness of MISiS and the State Task to universities of the Russian Federation (1855), Grant President МК-2301.2017.8, and the Basic Research Programme at the National Research University Higher School of Economics (HSE) in 2016. Authors thanks to E. Bazanova for helpful discussion and Academic Writing University Center.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.