203
Views
6
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Influence of Al3Ni crystallisation origin particles on hot deformation behaviour of aluminium based alloys

, , , , &
Pages 572-590 | Received 01 Jul 2016, Accepted 07 Dec 2016, Published online: 03 Jan 2017

References

  • B. Li, Q. Pan, Z. Zhang, and C. Li, Characterization of flow behavior and microstructural evolution of Al–Zn–Mg–Sc–Zr alloy using processing maps, Mater. Sci. Eng. A 556 (2012), pp. 844–848.10.1016/j.msea.2012.07.078
  • S. Chen, K. Chen, G. Peng, X. Chen, and Q. Ceng, Effect of heat treatment on hot deformation behavior and microstructure evolution of 7085 aluminum alloy, J. Alloys Compd. 537 (2012), pp. 338–345.10.1016/j.jallcom.2012.05.052
  • N. Jin, H. Zhang, Y. Han, W. Wu, and J. Chen, Hot deformation behavior of 7150 aluminum alloy during compression at elevated temperature, Mater. Charact. 60 (2009), pp. 530–536.10.1016/j.matchar.2008.12.012
  • Z. Hui, J. Neng-ping, and C. Jiang-hua, Hot deformation behavior of Al–Zn–Mg–Cu–Zr aluminum alloys during compression at elevated temperature, Trans. Nonferrous Met. Soc. China 21 (2011), pp. 437–442.
  • B. Li, Q. Pan, and Z. Yin, Microstructural evolution and constitutive relationship of Al–Zn–Mg alloy containing small amount of Sc and Zr during hot deformation based on Arrhenius-type and artificial neural network models, J. Alloys Compd. 584 (2014), pp. 406–416.10.1016/j.jallcom.2013.09.036
  • Y.C. Lin, L.T. Li, and Y.Q. Jiang, A phenomenological constitutive model for describing thermo-viscoplastic behavior of Al–Zn–Mg–Cu alloy under hot working condition, Exp. Mech. 52 (2012), pp. 993–1002.10.1007/s11340-011-9546-4
  • L.M.Yan, J. Shen, J.P. Li, Z.P. Li, and X.D. Yan, Deformation behavior and microstructure of an Al–Zn–Mg–Cu–Zr alloy during hot deformation, Int. J. Minerals, Metall. Mater.. 17 1 (2010), pp. 46–52.10.1007/s12613-010-0108-z
  • B. Wu, M.Q. Li, and D.W. Ma, The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy, Mater. Sci. Eng. A 542 (2012), pp. 79–87.10.1016/j.msea.2012.02.035
  • L. Shi, H. Yang, L.G. Guo, and J. Zhang, Constitutive modeling of deformation in high temperature of a forging 6005A aluminum alloy, Mater. Des. 54 (2014), pp. 576–581.10.1016/j.matdes.2013.08.037
  • Y.N. Kwon, Y.S. Lee, and J.H. Lee, Deformation behavior of Al–Mg–Si alloy at the elevated temperature, J. Mater. Process. Technol. 187–188 (2007), pp. 533–536.10.1016/j.jmatprotec.2006.11.207
  • H. Zhang, L. Li, D. Yuan, and D. Peng, Hot deformation behavior of the new Al–Mg–Si–Cu aluminum alloy during compression at elevated temperatures, Mater. Charact. 58 (2007), pp. 168–173.10.1016/j.matchar.2006.04.012
  • F. Jiang, H. Zhang, X. Ji, X. Meng, and L. Li, Comparative hot deformation characters of Al–Mn–Mg–RE alloy and Al–Mn–Mg–RE–Ti alloy, Mater. Sci. Eng. A 595 (2014), pp. 10–17.10.1016/j.msea.2013.12.004
  • A. Alankar and M.A. Wells, Constitutive behavior of as-cast aluminum alloys AA3104, AA5182 and AA6111 at below solidus temperatures, Mater. Sci. Eng. A 527 (2010), pp. 7812–7820.10.1016/j.msea.2010.08.056
  • T. Zhang, Y. Tao, and X. Wang, Constitutive behavior, microstructural evolution and processing map of extruded Al–1.1Mn–0.3Mg–0.25RE alloy during hot compression, Trans. Nonferrous Met. Soc. China 24 (2014), pp. 1337–1345.10.1016/S1003-6326(14)63197-6
  • X.-M. Zhang, M. Xu, J.-G. Tang, and J. Ou, Hot-compression behavior of Al–1Mn–1Mg alloy, J. Cent. South Univ. Technol. 17 (2010), pp. 425–430.10.1007/s11771-010-0501-9
  • J.-G. Tang, X.-X. Huang, and X.-M. Zhang, Hot-compression behavior of Al alloy 5182, J. Cent. South Univ. 19 (2012), pp. 2073–2080.10.1007/s11771-012-1247-3
  • W.M. Van Haaften, B. Magnin, W.H. Kool, and L. Katgerman, Constitutive behavior of as-cast AA1050, AA3104, and AA5182, Metall. Mater. Trans. A 33 (2002), pp. 1971–1980.10.1007/s11661-002-0030-8
  • AYu Churyumov, A.I. Bazlov, A.A. Tsar’kov, and A.V. Mikhaylovskaya, Study of the structure and properties of a wrought Al–Mg–Mn aluminum alloy on a Gleeble 3800 simulator designed for physical modeling of thermomechanical processes, Metallurgist 56 (2012), pp. 618–623.10.1007/s11015-012-9624-6
  • G. Xu, X. Peng, X. Liang, X. Li, and Z. Yin, Constitutive relationship for high temperature deformation of Al–3Cu–05Sc alloy, Trans. Nonferrous Met. Soc. China 23 (2013), pp. 1549–1555.10.1016/S1003-6326(13)62629-1
  • J. Zhang, B. Chen, and Z. Baoxiang, Effect of initial microstructure on the hot compression deformation behavior of a 2219 aluminum alloy, Mater. Des. 34 (2012), pp. 15–21.10.1016/j.matdes.2011.07.061
  • X.Y. Liu, Q.L. Pan, Y.B. He, W.B. Li, W.J. Liang, and Z.M. Yin, Flow behavior and microstructural evolution of Al–Cu–Mg–Ag alloy during hot compression deformation, Mater. Sci. Eng. A 500 (2009), pp. 150–154.10.1016/j.msea.2008.09.028
  • S. Banerjee, P.S. Robi, and A. Srinivasan, Prediction of hot deformation behavior of Al–5.9%Cu–0.5%Mg alloys with trace additions of Sn, J. Mater. Sci. 47 (2012), pp. 929–948.10.1007/s10853-011-5873-1
  • S.M. Miresmaeili and B. Nami, Impression creep behavior of Al–1.9%Ni–1.6%Mn–1%Mg alloy, Mater. Des. 56 (2014), pp. 286–290.10.1016/j.matdes.2013.11.011
  • N.A. Belov, A.A. Aksenov, and D.G. Eskin, Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys, Elsevier, Amsterdam, 2005.
  • N.A. Belov, Quantitative phase analysis of the Al-Zn-Mg-Cu-Ni phase diagram in the region of compositions of high-strength nickalines, Russ. J. Non-Ferrous Met. 51 (2010), pp. 243–249.10.3103/S1067821210030090
  • A.V. Mikhaylovskaya, M.A. Ryazantseva, and V.K. Portnoy, Effect of eutectic particles on the grain size control and the superplasticity of aluminium alloys, Mater. Sci. Eng. A 528 (2011), pp. 7306–7309.10.1016/j.msea.2011.06.042
  • A.V. Mikhaylovskaya and V.K. Portnoy, Superplasticity of the aluminum alloys containing the Al3Ni eutectic particles, Materialwiss. Werkstofftech. 43 (2012), pp. 772–775.10.1002/mawe.201200039
  • L.F. Mondolfo, Aluminum Alloys: Structure and Properties, Butterworths, London, 1976.
  • F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon Press, Oxford, 1995.
  • H.E. Vante, R. Shahani, and E. Nes, Deformation of cube-oriented grains and formation of recrystallized cube grains in a hot deformed commercial AlMgMn aluminium alloy, Acta Mater. 44 (1996), pp. 4447–4462.
  • R.A. Vandermeer and D. Juul Jensen, Recrystallization in hot vs cold deformed commercial aluminum: A microstructure path comparison, Acta Mater. 51 (2003), pp. 3005–3018.
  • N.A. Belov, A.A. Aksenov, and V.S. Zolotorevskij, Patent No. US7604772B2, 2009.
  • N.A. Belov, Quantitative phase analysis of the Al–Zn–Mg–Cu–Ni phase diagram in the region of compositions of high strength nickalines, Russ. J. Non-Ferrous Met.. 51 (2010), pp. 243–249.10.3103/S1067821210030090
  • N.A. Belov and V.S. Zolotorevskiy, The Effect of Nickel on the Structure, Mechanical and Casting Properties of Aluminium Alloy of 7075 Type, Mater. Sci. Forum 396–402 (2002), pp. 935–940.10.4028/www.scientific.net/MSF.396-402
  • A.V. Mikhaylovskaya, A.D. Kotov, A.V. Pozdniakov, and V.K. Portnoy, A high-strength aluminium-based alloy with advanced superplasticity, J. Alloys Compd. 599 (2014), pp. 139–144.10.1016/j.jallcom.2014.02.061
  • A.V. Mikhaylovskaya, O.A. Yakovtseva, V.V. Cheverikin, A.D. Kotov, and V.K. Portnoy, Superplastic behaviour of Al–Mg–Zn–Zr–Sc-based alloys at high strain rates, Mater. Sci. Eng A 659 (2016), pp. 225–233.10.1016/j.msea.2016.02.061
  • A.D. Kotov, A.V. Mikhaylovskaya, M.S. Kishchik, A.A. Tsarkov, S.A. Aksenov, and V.K. Portnoy, Superplasticity of high-strength Al-based alloys produced by thermomechanical treatment, J. Alloys Compd. 688 (2016), pp. 336–344.10.1016/j.jallcom.2016.07.045
  • A.V. Mikhaylovskaya, A.D. Kotov, V.S. Levchenko, and V.K. Portnoy, The study of the technology parameters on the superplasticity of the new Al–Zn–Mg–Cu–Ni–Zr base alloy, Materialwiss. Werkstofftech. 45 (2014), pp. 822–827.10.1002/mawe.v45.9
  • A.V. Mikhaylovskaya and V.K. Portnoy, Analysis of the softening of heterophase aluminum alloys with a eutectic component, Russ. J. Non-Ferrous Met. 53 (2012), pp. 386–391.10.3103/S1067821212050082
  • A.V. Mikhaylovskaya, A.D. Kotov, AYu Churyumov, and V.K. Portnoy, Analysis of softening alloys of the Al–Ni system containing particles of variable dispersity, Russ. J. Non-Ferrous Met. 53 (2012), pp. 457–464.10.3103/S1067821212060077
  • AYu Churyumov, M.G. Khomutov, A.A. Tsar’kov, A.V. Pozdnyakov, A.N. Solonin, V.M. Efimov, and E.L. Mukhanov, Study of the structure and mechanical properties of corrosion-resistant steel with a high concentration of boron at elevated temperatures, Phys. Met. Metall. 115 (2014), pp. 809–813.10.1134/S0031918X14080031
  • R.W. Evans and P.J. Scharning, Axisymmetric compression test and hot working properties of alloys, Mater. Sci. Technol. 17 (2001), pp. 995–1004.10.1179/026708301101510843
  • J. Zhou, L. Qi, and G. Chen, New inverse method for identification of constitutive parameters, Trans. Nonferrous Met. Soc. China 16 (2006), pp. 148–152.10.1016/S1003-6326(06)60026-5
  • C.J. Bennett, S.B. Leen, E.J. Williams, P.H. Shipway, and T.H. Hyde, A critical analysis of plastic flow behaviour in axisymmetric isothermal and Gleeble compression testing, Comput. Mater. Sci. 50 (2010), pp. 125–137.10.1016/j.commatsci.2010.07.016
  • E.N. Chumachenko, A.V. Semyanistyj, and N.N. Grunin, Automatized designing of isothermal forging technological processes on the base of programed complex ‘SPLEN’, Kuznechno-Shtampovochnoe Proizvodstvo 2 (1993), pp. 13–15.
  • E.N. Chumachenko, I.V. Logashina, and S.A. Aksenov, Simulation modeling of rolling in passes, Metallurgist 50 (2006), pp. 413–418.10.1007/s11015-006-0099-1
  • S.Aksenov, Y. Puzino, and I. Mazur, Inverse analysis of plane strain and uniaxial compression tests performed on Gleeble, METAL 2015 – Conference Proceedings, 23rd International Conference on Metallurgy and Materials, Brno, Czech Republic, 2015, pp. 170–176.
  • S.A. Aksenov, J. Kliber, Y.A. Puzino, and S.A. Bober, Processing of plane strain compression test results for investigation of AISI-304 stainless steel constitutive behaviour, J. Chem. Technol. Metall. 50 (2015), pp. 644–650.
  • A. Deschamps and Y. Brechet, Influence of predeformation and ageing of an Al–Zn–Mg alloy-II. Modeling of precipitation kinetics and yield stress, Acta Mater. 47 (1999), pp. 293–305.
  • M.J. Starink, P. Wang, I. Sinclair, and P.J. Gregson, Microstrucure and strengthening of Al–Li–Cu–Mg alloys and MMCs: II. Modelling of yield strength, Acta Mater. 47 (1999), pp. 3855–3868.
  • E.Orowan, The creep of metals. J. West Scotland Iron Steel Inst. 54 (1946–1947), pp. 45–59.
  • P.M. Kelly, Progress report on recent advances in physical metallurgy: (C) The quantitative relationship between microstructure and properties in two-phase alloys, Int. Mater. Rev. 18 (1973), pp. 31–36.10.1179/imr.1973.18.1.31
  • M.V. Zaharov and A.M. Zaharov, Superalloys, Metallurgia, Moscow, 1972 (in russian).
  • J.W. Martin, Micromechanisms in Particle-hardened Alloys, Cambridge University Press, Cambridge, 1980.
  • O. Engler, L. Löchte, and J. Hirsch, Through-process simulation of texture and properties during the thermomechanical processing of aluminium sheets, Acta Mater. 55 (2007), pp. 5449–5463.10.1016/j.actamat.2007.06.010
  • J.-P. Poirier, Creep of Crystals: High-temperature Deformation Processes in Metals, Ceramics and Minerals, Cambridge University Press, Cambridge, 1985.10.1017/CBO9780511564451
  • F.J. Humphreys, A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures – II. The effect of second-phase particles, Acta Mater. 45 (1997), pp. 5031–5039.
  • T.C. Schulthess, P.E.A. Turchi, A. Gonis, and T.G. Nieh, Systematic study of stacking fault energies of random Al-based alloys, Acta Mater. 46 (1998), pp. 2215–2221.10.1016/S1359-6454(97)00432-1
  • NYu Zolotorevsky, A.N. Solonin, AYu Churyumov, and V.S. Zolotorevsky, Study of work hardening of quenched and naturally aged Al–Mg and Al–Cu alloys, Mater. Sci. Eng. A 502 (2009), pp. 111–117.10.1016/j.msea.2008.10.010
  • F.J. Humphreys, Recrystallization mechanisms in two-phase alloys, Met. Sci. 13 (1979), pp. 136–145.10.1179/msc.1979.13.3-4.136
  • F.J. Humphreys, Particle stimulated nucleation of recrystallization at silica particles in nickel, Scr. Mater. 43 (2000), pp. 591–596.10.1016/S1359-6462(00)00442-5
  • H. Mirzadeh, A simplified approach for developing constitutive equations for modeling and prediction of hot deformation flow stress, Metall. Mater. Trans. A 46 (2015), pp. 4027–4037.10.1007/s11661-015-3006-1
  • H. Mirzadeh, Constitutive modeling and prediction of hot deformation flow stress under dynamic recrystallization conditions, Mech. Mater. 85 (2015), pp. 66–79.10.1016/j.mechmat.2015.02.014
  • C. Zener and J.H. Hollomon, Effect of strain rate upon plastic flow of steel, J. Appl. Phys. 15 (1944), pp. 22–32.10.1063/1.1707363
  • G. Quan, G. Li, T. Chen, Y. Wang, Y. Zhang, and J. Zhou, Dynamic recrystallization kinetics of 42CrMo steel during compression at different temperatures and strain rates, Mater. Sci. Eng. A 528 (2011), pp. 4643–4651.10.1016/j.msea.2011.02.090
  • J. van de Langkruis, W.H. Kool, and S. van der Zwaag, Assessment of constitutive equations in modelling the hot deformability of some overaged Al–Mg–Si alloys with varying solute contents, Mater. Sci. Eng. A 266 (1999), pp. 135–145.10.1016/S0921-5093(99)00046-5
  • S. Serajzadeh, A mathematical model for evolution of flow stress during hot deformation, Mater. Lett. 59 (2005), pp. 3319–3324.10.1016/j.matlet.2005.05.065
  • J.R. Cho, W.B. Bae, W.J. Hwang, and P. Hartley, A study on the hot-deformation behavior and dynamic recrystallization of Al–5 wt.%Mg alloy, J. Mater. Process. Technol. 118 (2001), pp. 356–361.10.1016/S0924-0136(01)00978-5
  • H. Mirzadeh and A. Najafizadeh, Flow stress prediction at hot working conditions, Mater. Sci. Eng. A 527 (2010), pp. 1160–1164.10.1016/j.msea.2009.09.060
  • K.B. Hyde and P.S. Bate, Dynamic grain growth in Al–6Ni: Modelling and experiments, Acta Mater. 53 (2005), pp. 4313–4321.10.1016/j.actamat.2005.05.029
  • C.M. Sellars and W.J. McTegart, On the mechanism of hot deformation, Acta Metall. 14 (1966), pp. 1136–1138.10.1016/0001-6160(66)90207-0
  • C.J. Smithells, Metals Reference Book, Butterworths, London, 1967.
  • F.J. Humphreys and P.N. Kalu, Dislocation-particle interactions during high temperature deformation of two-phase aluminium alloys, Acta Metall. 35 (1987), pp. 2815–2829.10.1016/0001-6160(87)90281-1
  • H. Mirzadeh, M. Roostaei, M.H. Parsa, and R. Mahmudi, Rate controlling mechanisms during hot deformation of Mg–3Gd–1Zn magnesium alloy: Dislocation glide and climb, dynamic recrystallization, and mechanical twinning, Mater. Des. 68 (2015), pp. 228–231.10.1016/j.matdes.2014.12.020
  • M. Roostaei, M.H. Parsa, R. Mahmudi, and H. Mirzadeh, Hot compression behavior of GZ31 magnesium alloy, J. Alloys Compd. 631 (2015), pp. 1–6.10.1016/j.jallcom.2014.11.188
  • M. Shakiba, N. Parson, and X.-G. Chen, Hot deformation behavior and rate-controlling mechanism in dilute Al–Fe–Si alloys with minor additions of Mn and Cu, Mater. Sci. Eng. A 636 (2015), pp. 572–581.10.1016/j.msea.2015.04.029
  • D.H. Bae and A.K. Ghosh, Grain size and temperature dependence of superplastic deformation in an Al–Mg alloy under isostructural condition, Acta Mater. 48 (2000), pp. 1207–1224.10.1016/S1359-6454(99)00445-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.