165
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Structural and electronic properties of non-metal doping in Li2FePO4F compound: spin density functional theory

Pages 3155-3164 | Received 16 Mar 2020, Accepted 20 Aug 2020, Published online: 15 Sep 2020
 

ABSTRACT

I comparatively determine the structural and electronic properties of Li2FePO4F compounds with F substituted by Cl, Br and I atom using the spin density functional theory with Perdew–Burke–Ernzerhof generalised gradient approximation (GGA + U). The lattice parameters and volumes are improved by the dopants because of the greater atomic radius in dopants. Non-metal doping in Li2FePO4F reduces the band gap. When doping, Li ion can mobile efficiently because of the reduced ionic character and increased Li-Dopant bond lengths. As the computations, Li2FePO4(F, I) material possesses the highest electronic conductivity among all compounds. Finally, this non-metal doping research provides the detailed information for understanding the enhancement mechanism and assists more broadly in the material design for the wider class of fluorophosphates cathodes in Li-ion rechargeable batteries.

Acknowledgements

The author would like to acknowledge the support from Department of Physics, Faculty of Science, Ubon Ratchathani University, Thailand.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.