165
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Structural and electronic properties of non-metal doping in Li2FePO4F compound: spin density functional theory

Pages 3155-3164 | Received 16 Mar 2020, Accepted 20 Aug 2020, Published online: 15 Sep 2020

References

  • J.M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414 (2001), pp. 359–367. doi: 10.1038/35104644
  • R. Cai, T. Yuan, R. Ran, X.Q. Liu, and Z.P. Shao, Preparation and re-examination of Li4Ti4.85Al0.15O12 as anode material of lithium-ion battery. Int. J. Energy Res. 35 (2010), pp. 68–77. doi: 10.1002/er.1741
  • S. Santhanagopalan and R.E. White, State of charge estimation using an unscented filter for high power lithium ion cells. Int. J. Energ. Res. 34 (2010), pp. 152–163. doi: 10.1002/er.1655
  • D.P. Abraham, D.W. Dees, J. Christophersen, C. Ho, and A.N. Jansen, Performance of high-power lithium-ion cells under pulse discharge and charge conditions. Int. J. Energ. Res. 34 (2010), pp. 190–203. doi: 10.1002/er.1665
  • A.K. Padhi, K.S. Nanjundaswamy, and J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144 (1997), pp. 1188–1194. doi: 10.1149/1.1837571
  • B.L. Ellis, K.T. Lee, and L.F. Nazar, Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22 (2010), pp. 691–714. doi: 10.1021/cm902696j
  • A. Manthiram, Materials challenges and opportunities of lithium ion batteries. J. Phys. Chem. Lett. 2 (2011), pp. 176–184. doi: 10.1021/jz1015422
  • H.N. Girish and G.Q. Shao, Advances in high-capacity Li2MSiO4(M = Mn, Fe, Co, Ni, …) cathode materials for lithium-ion batteries. RSC Adv. 5 (2015), pp. 98666–98686. doi: 10.1039/C5RA18594G
  • B.L. Ellis, W.R.M. Makahnouk, Y. Makimura, K. Toghill, and L.F. Nazar, A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat. Mater. 6 (2007), pp. 749–753. doi: 10.1038/nmat2007
  • B.L. Ellis, T.N. Ramesh, W.N. Rowan-Weetaluktuk, D.H. Ryan, and L.F. Nazar, Solvothermal synthesis of electroactive lithium iron tavorites and structure of Li2FePO4F. J. Mater. Chem. 22 (2012), pp. 4759–4766. doi: 10.1039/c2jm15273h
  • M. Dutreilh, C. Chevalier, M. El-Ghozzi, D. Avignant, and J.M. Montel, Synthesis and crystal structure of a new lithium nickel fluorophosphate Li2[NiF(PO4)] with an ordered mixed anionic framework. J. Solid State Chem. 142 (1999), pp. 1–5. doi: 10.1006/jssc.1998.7908
  • S. Okada, M. Ueno, Y. Uebou, and J.I. Yamaki, Fluoride phosphate Li2CoPO4F as a high-voltage cathode in Li-ion batteries. J. Power Sources 146 (2005), pp. 565–569. doi: 10.1016/j.jpowsour.2005.03.149
  • N.R. Khasanova, O.A. Drozhzhin, D.A. Storozhilova, C. Delmas, and E.V. Antipov, New form of Li2FePO4F as cathode material for Li-ion batteries. Chem. Mater. 24 (2012), pp. 4271–4273. doi: 10.1021/cm302724a
  • G.X. Wang, L. Yang, S.L. Bewlay, Y. Chen, H.K. Liu, and J.H. Ahn, Electrochemical properties of carbon coated LiFePO4 cathode materials. J. Power Sources 146 (2005), pp. 521–524. doi: 10.1016/j.jpowsour.2005.03.201
  • K.S. Park, J.T. Son, H.T. Chung, S.J. Kim, C.H. Lee, K.T. Kang, and H.G. Kim, Surface modification by silver coating for improving electrochemical properties of LiFePO4. Solid State Commun. 129 (2004), pp. 311–314. doi: 10.1016/j.ssc.2003.10.015
  • K.S. Park, S.B. Schougaard, and J.B. Goodenough, Conducting-polymer/iron-redox- couple composite cathodes for lithium secondary batteries. Adv. Mater. 19 (2007), pp. 848–851. doi: 10.1002/adma.200600369
  • M. Gaberscek, R. Dominko, and J. Jamnik, Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes. Electrochem. Commun. 9 (2007), pp. 2778–2783. doi: 10.1016/j.elecom.2007.09.020
  • S.-Y. Chung, J.T. Bloking, and Y.-M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 1 (2002), pp. 123–128. doi: 10.1038/nmat732
  • N.R. Khasanova, O.A. Drozhzhin, S.S. Fedotov, D.A. Storozhilova, R.V. Panin, and E.V. Antipov, Synthesis and electrochemical performance of Li2Co1−xMxPO4F (M = Fe, Mn) cathode materials. Beilstein J. Nanotechnol. 4 (2013), pp. 860–867. doi: 10.3762/bjnano.4.97
  • C.J. Allen, S. Mukerjee, and K.M. Abraham, Li2-xFe0.5(VO)0.5(PO4)F0.5, a new mixed metal phosphate cathode material. J. Electrochem. Soc. 159(10) (2012), pp. A1659–A1663. doi: 10.1149/2.030210jes
  • M.K. Devaraju and I. Honma, One-pot synthesis of Li2FePO4F nanoparticles via a supercritical fluid process and characterization for application in lithium-ion batteries. RSC Adv. 3 (2013), pp. 19849–19852. doi: 10.1039/c3ra42686f
  • F. Yang, W. Sun, Y. Li, H. Yuan, Z. Dong, H. Li, J. Tian, Y. Zheng, and J. Zhang, Li2FePO4F and its metal-doping for Li-ion batteries: an ab initio study. RSC Adv. 4 (2014), pp. 50195–50201. doi: 10.1039/C4RA06170E
  • S.S. Fedotov, S.M. Kuzovchikova, N.R. Khasanova, O.A. Drozhzhina, D.S. Filimonov, O.M. Karakulina, J. Hadermann, A.M. Abakumov, and E.V. Antipov, Synthesis, structure and electrochemical properties of LiNaCo0.5Fe0.5PO4F fluoride-phosphate. J. Solid State Chem. 242 (2016), pp. 70–77. doi: 10.1016/j.jssc.2016.02.042
  • D. Wang, H. Li, S. Shi, X. Huang, and L. Chen, Improving the rate performance of LiFePO4 by Fe-site doping. Electrochim. Acta 50 (2005), pp. 2955–2958. doi: 10.1016/j.electacta.2004.11.045
  • H. Liu, C. Li, Q. Cao, Y. Wu, and R. Holze, Effects of heteroatoms on doped LiFePO4/C composites. J. Solid State Electrochem. 12 (2008), pp. 1017–1020. doi: 10.1007/s10008-007-0480-4
  • X. Ou, G. Liang, L. Wang, S. Xu, and X. Zhao, Effects of magnesium doping on electronic conductivity and electrochemical properties of LiFePO4 prepared via hydrothermal route. J. Power Sources 184 (2008), pp. 543–547. doi: 10.1016/j.jpowsour.2008.02.077
  • N. Meethong, Y.H. Kao, S.A. Speakman, and Y.M. Chiang, Aliovalent substitutions in olivine lithium iron phosphate and impact on structure and properties. Adv. Funct. Mater. 19 (2009), pp. 1060–1070. doi: 10.1002/adfm.200801617
  • H. Lin, Y. Wen, C. Zhang, L. Zhang, Y. Huang, B. Shan, and R. Chen, A GGA+U study of lithium diffusion in vanadium doped LiFePO4. Solid State Commun. 152 (2012), pp. 999–1003. doi: 10.1016/j.ssc.2012.03.027
  • J.P. Perdew, K. Ernzerhof, and M. Burke, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18) (1996), pp. 3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, and M.C. Payne, First principles methods using CASTEP. Zeitschrift für Kristallographie 220(5–6) (2005), pp. 567–570.
  • M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14(11) (2002), pp. 2717–2744. doi: 10.1088/0953-8984/14/11/301
  • C.G. Broyden, The convergence of a class of double-rank minimization algorithms 1. General considerations. IMA J. Appl. Math. 6 (1970), pp. 76–90. doi: 10.1093/imamat/6.1.76
  • R. Fletcher, A new approach to variable metric algorithms. Comput. J. 13 (1970), pp. 317–322. doi: 10.1093/comjnl/13.3.317
  • D. Goldfarb, A family of variable-metric methods derived by variational means. Math. Comput. 24 (1970), pp. 23–26. doi: 10.1090/S0025-5718-1970-0258249-6
  • D.F. Shanno, Conditioning of quasi-Newton methods for function minimization. Math. Comput. 24 (1970), pp. 647–656. doi: 10.1090/S0025-5718-1970-0274029-X
  • X. Zhuo, L. Yangping, L. Chenxi, and L. Zhengtang, Structural, electronic and optical properties of B, N and Ni-doped zinc-blende GeC by first-principles calculation. J. Alloys Compd. 687 (2016), pp. 168. doi: 10.1016/j.jallcom.2016.06.115

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.