231
Views
3
CrossRef citations to date
0
Altmetric
Articles

Modeling heavy metal removal by retention on Laurus nobilis leaves biomass: linear and nonlinear isotherms and design

ORCID Icon &
Pages 755-763 | Published online: 09 Jan 2020
 

Abstract

Heavy metal industries pose a serious threat to the environment. Conventional methods used for heavy metal removal are generally not always low-cost and environmentally friendly. So, researchers focused to investigate alternative biosorbents for the uptake of heavy metal. In this study, Laurus nobilis leaves (LNL) were used as a biosorbent for the uptake of toxic metals such as Pb2+ and Cd2+ from aqueous solutions. Batch biosorption experiments under varied conditions, such as biosorbent dosage, solution pH, heavy metal concentration, biosorption time, ionic strength, humic acid effect and competitive metal ions (Cd(II), Pb(II), Cu(II) and Zn(II)) were performed. The biomass was characterized using FT-IR spectra and SEM images. The nonlinearized and linearized isotherm models were compared and discussed. A single-stage batch bioreactor system for each heavy metal based on the best fit nonlinear isotherm model also has been presented. The biosorption of Pb(II) on LNL fitted better in the Langmuir model and Cd(II) biosorption fitted better in the Freundlich model by nonlinearized equations. The LNL exhibited the maximum monolayer biosorption capacities (qmax) of 7.1 and 32.5 mg/g for cadmium and lead, respectively. LNL showed great potential especially in Pb(II) uptake. LNL may be promising for heavy metal removal from aqueous environment.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This study was supported by the Scientific Research Project of Sinop University, Sinop, Turkey under the [grant number of RBB -1901-16-28].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.