231
Views
3
CrossRef citations to date
0
Altmetric
Articles

Modeling heavy metal removal by retention on Laurus nobilis leaves biomass: linear and nonlinear isotherms and design

ORCID Icon &

References

  • Anwar J, Shafique U, Salman M, Dar A, Anwar S. 2010. Removal of Pb (II) and Cd (II) from water by adsorption on peels of banana. Bioresource Technol. 101(6):1752–1755. doi:10.1016/j.biortech.2009.10.021.
  • APHA. 2017. Standard methods for the examination of water and wastewater. 21st ed. Washington DC: American Public Health Association.
  • Asamoah RK, Ofori-Sarpong G, Amankwah RK. 2012. Biosorption of heavy metals from wastewater using Bambusa vulgaris (Bamboo) PR. 2nd UMaT Biennial International Mining and Mineral Conference, p. 56–61.
  • Babarinde NAA, Babalola JO, Sanni SO. 2007. Isotherm and thermodynamic studies of the biosorption of Cd (II) from solution by maize leaf. Int J Phy Sci. 2(8):207–211.
  • Bayo J, Esteban G, Castillo J. 2012. The use of native and protonated grapefruit biomass (Citrus paradisi L.) for cadmium (II) biosorption: equilibrium and kinetic modelling. Environ Technol. 33(7):761–772. doi:10.1080/09593330.2011.592227.
  • Blázquez G, Ronda A, Martín-Lara M.A, Pérez A, Calero M. 2015. Comparative study of isotherm parameters of lead biosorption by two wastes of olive-oil production. Water Sci Technol. 72(5):711–720. doi:10.2166/wst.2015.153.
  • Bulgariu D, Bulgariu L. 2016. Potential use of alkaline treated algae waste biomass as sustainable biosorbent for clean recovery of cadmium (II) from aqueous media: batch and column studies. J Cleaner Prod. 112:4525–4533. doi:10.1016/j.jclepro.2015.05.124.
  • Bulgariu D, Bulgariu L. 2012. Equilibrium and kinetics studies of heavy metal ions biosorption on green algae waste biomass. Bioresour Technol. 103(1):489–493. doi:10.1016/j.biortech.2011.10.016.
  • Dawood S, Sen T. K. 2012. Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design. Water Res. 46(6):1933–1946. doi:10.1016/j.watres.2012.01.009.
  • Demey H, Vincent T, Guibal E. 2018. A novel algal-based sorbent for heavy metal removal. Che Eng J. 332:582–595. doi:10.1016/j.cej.2017.09.083.
  • Dönmez M, Camcı S, Akbal F, Yağan M. 2015. Adsorption of copper from aqueous solution onto natural sepiolite: equilibrium, kinetics, thermodynamics, and regeneration studies. Desalin Water Treat. 54(10):2868–2882. doi:10.1080/19443994.2014.905972.
  • Elhafez S A, Hamad H. A, Zaatout A.A, Malash G. F. 2017. Management of agricultural waste for removal of heavy metals from aqueous solution: adsorption behaviors, adsorption mechanisms, environmental protection, and techno-economic analysis. Environ Sci Pollut Res. 24(2):1397–1415. doi:10.1007/s11356-016-7891-7.
  • Gomez-Gonzalez R, Cerino-Córdova FJ, Garcia-León A.M, Soto-Regalado E, Davila-Guzman N.E, Salazar-Rabago J J. 2016. Lead biosorption onto coffee grounds: Comparative analysis of several optimization techniques using equilibrium adsorption models and ANN. J Taiwan Inst Chem Eng. 68:201–210. doi:10.1016/j.jtice.2016.08.038.
  • Gümüş D. 2019. Biosorptive application of defatted Laurus nobilis leaves as a waste material for treatment of water contaminated with heavy metal. Int J Phytoremediation. 21(6):556–563. doi:10.1080/15226514.2018.1537254.
  • Gümüş D, Akbal F. 2017. A comparative study of ozonation, iron coated zeolite catalyzed ozonation and granular activated carbon catalyzed ozonation of humic acid. Chemosphere. 174:218–231. doi:10.1016/j.chemosphere.2017.01.106.
  • Igwe JC, Abia AA. 2007. Adsorption isotherm studies of Cd (II), Pb (II) and Zn (II) ions bioremediation from aqueous solution using unmodified and EDTA-modified maize cob. Eclet Quím. 32(1):33–42. doi:10.1590/S0100-46702007000100005.
  • Kamari A, Yusof SN, Abdullah F, Putra WP. 2014. Biosorptive removal of Cu (II), Ni (II) and Pb (II) ions from aqueous solutions using coconut dregs residue: adsorption and characterisation studies. J Environ Chemical Eng. 2(4):1912–1919. doi:10.1016/j.jece.2014.08.014.
  • Khaskheli MI, Memon SQ, Jatoi WB, Chandio ZA, Shar GK, Malik A, Khan S. 2017. Competitive sorption of nickel, copper, lead and cadmium on okra leaves (Abelmoschus esculentus). Global Nest J. 19(2):278–288.
  • Kumar S, Singh J, Sharma A. 2004. Bay leaves. In: Peter, K.V. editor. Handbook of herbs and spices. Cambridge, England: Woodhead Publishing Limited.
  • Kim N, Park M, Park D. 2015. A new efficient forest biowaste as biosorbent for removal of cationic heavy metals. Bioresour Technol. 175:629–632. doi:10.1016/j.biortech.2014.10.092.
  • Laskar MA, Ali S K, Siddiqui S. 2016. A potential bio-sorbent for heavy metals in the remediation of waste water. J Sustain Dev Energy Water Environ Syst. 4(4):320–332. doi:10.13044/j.sdewes.2016.04.0025.
  • Liu G, Wang J, Liu X, Liu X, Li X, Ren Y, Wang J, Dong L. 2018. Partitioning and geochemical fractions of heavy metals from geogenic and anthropogenic sources in various soil particle size fractions. Geoderma. 312:104–113. doi:10.1016/j.geoderma.2017.10.013.
  • Mahmoud M.E, Nabi GM, Mahmoud SM. 2015. High performance nano-zirconium silicate adsorbent for efficient removal of copper (II), cadmium (II) and lead (II). J Environ Chem Eng. 3(2):1320–1328. doi:10.1016/j.jece.2014.11.027.
  • Mohd Salim R, Khan Chowdhury A. J, Rayathulhan R, Yunus K, Sarkar M. Z. I. 2016. Biosorption of Pb and Cu from aqueous solution using banana peel powder. Desalin Water Treat. 57(1):303–314. doi:10.1080/19443994.2015.1091613.
  • Morosanu I, Teodosiu C, Paduraru C, Ibanescu D, Tofan L. 2017. Biosorption of lead ions from aqueous effluents by rapeseed biomass. New Biotechnol. 39:110–124. doi:10.1016/j.nbt.2016.08.002.
  • Nemeş L. N, Bulgariu L. 2016. Optimization of process parameters for heavy metals biosorption onto mustard waste biomass. Open Chem. 14(1):175–187. doi:10.1515/chem-2016-0019.
  • Nouri L, Ghodbane I, Hamdaoui O, Chiha M. 2007. Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran. J Hazard Mater. 149(1):115–125. doi:10.1016/j.jhazmat.2007.03.055.
  • Obike A.I, Igwe JC, Emeruwa CN, Uwakwe K.J. 2018. Equilibrium and kinetic studies of Cu (II), Cd (II), Pb (II) and Fe (II) adsorption from aqueous solution using cocoa (Theobroma cacao) pod husk. J Applied Sci and Environ Management. 22(2):182–190. doi:10.4314/jasem.v22i2.5.
  • Peixoto LR, Rosalen PL, Ferreira GLS, Freires IA, De Carvalho FG, Castellano LR, De Castro RD. 2017. Antifungal activity, mode of action and anti-biofilm effects of Laurus nobilis Linnaeus essential oil against Candida spp. Arch Oral Biol. 73:179–185. doi:10.1016/j.archoralbio.2016.10.013.
  • Rao RAK, Ikram S, Uddin M.K. 2015. Removal of Cr (VI) from aqueous solution on seeds of Artimisia absinthium (novel plant material). Desalin Water Treat. 54(12):3358–3371. doi:10.1080/19443994.2014.908147.
  • Rao KS, Anand S, Venkateswarlu P. 2010a. Adsorption of cadmium (II) ions from aqueous solution by Tectona grandis LF (teak leaves powder). BioResources. 5(1):438–454.
  • Rao K. S, Anand S, Venkateswarlu P. 2010b. Psidium guvajava L leaf powder—a potential low-cost biosorbent for the removal of cadmium (II) ions from wastewater. Adsorpt Sci Technol. 28(2):163–178. doi:10.1260/0263-6174.28.2.163.
  • Reddy DD, Ghosh RK, Bindu JP, Mahadevaswamy M, Murthy T. 2017. Removal of methylene blue from aqueous system using tobacco stems biomass: Kinetics, mechanism and single stage adsorber design. Environ Prog Sustainable Energy. 36(4):1005–1012. doi:10.1002/ep.12542.
  • Sahmoune MN. 2018. Performance of Streptomyces rimosus biomass in biosorption of heavy metals from aqueous solutions. Microchem J. 141:87–95. doi:10.1016/j.microc.2018.05.009.
  • Saraeian A, Hadi A, Raji F, Ghassemi A, Johnson M. 2018. Cadmium removal from aqueous solution by low-cost native and surface modified Sorghum x drummondii (Sudangrass). J Environ Chem Eng. 6(2):3322–3331.
  • Sarı A, Tuzen M. 2009. Kinetic and equilibrium studies of biosorption of Pb (II) and Cd (II) from aqueous solution by macrofungus (Amanita rubescens) biomass. J Hazard Mater. 164(2–3):1004–1011. doi:10.1016/j.jhazmat.2008.09.002.
  • Thurman EM. 2012. Organic geochemistry of natural waters. Vol. 2. Springer Science & Business Media. ISBN 978-94-009-5095-5
  • Yasin SA, Qasim AK. 2018. Kinetic study of adsorption of hexavalent chromium in aqueous solution using bay leaf (Laurus Nobilis) as new bio-adsorbent. SJUOZ. 6(3):104–107. doi:10.25271/sjuoz.2018.6.3.513.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.