219
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Biological reconditioning of sodium enriched zeolite by halophytes: case study of dairy farm effluent treatment

, , , , &
Pages 1001-1012 | Published online: 08 Aug 2020
 

Abstract

Constructed wetlands (CW) containing clinoptilolite zeolite and planted with five halophytes (Sesvium portulacastrum, Juncus effusus, Suaeda monoica, Inula crithmoides and Sarcocornia fruticosa) were irrigated with treated dairy farm effluent. The CW were operated for two years with retention time ranging from 2 to 7 d. Plant species did not affect SAR which was reduced in all treatments from 4.85 to 2.59 (mmol/L)0.5 due to ion exchange in zeolite. Halophytes increased evapotranspiration to 30 mm d−1 which countered sodium removal. Zeolite planted with Sesuvium portulacastrum had 15% lower sodium percentage (ESP, F1,118 = 12.53, p = 0.0006) and 5% higher calcium percentage (F1,118 = 7.44, p = 0.007) compared to non-planted zeolite, indicating reconditioning of zeolite with respect to sodium. Enhancement of SAR removal capability by reconditioned zeolite was demonstrated in 24 h batch experiments on excavated zeolite (n = 6) with saline water (SAR = 0, 17.6, 62.8, and 122.8 (mmol/L)0.5). Zeolite from Sesuvium planted CW reduced SAR to a greater extent than non-planted zeolite and was significant for inlet SAR 17.6 which was reduced to 3.33 ± 0.3 (mmol/L)0.5 compared to 3.68 ± 0.12 by non-planted zeolite (p < 0.05). In-situ biological reconditioning of active matrix in CW by tailored macrophytes is a novel strategy that may be applicable to other pollutants.

Graphical Abstract

Acknowledgments

The pilot system was kindly hosted in the Dairy Farm of Kibbutz Kfar Blum. The authors thank Israel Parks Authority for providing halophytes from the Enot Tsukim salt marsh reserve, Kibbutz Ein Gedi for cuttings of Sesuvium portulacastrum and Salt of the Earth Ltd for providing access to the Atlit salt evaporation pools. EO is grateful for the support of BRIGAID, ICA-Israel, MIGAL Galilee Research Institute and his wonderful family. AA thanks Dor Cohen for her support.

Additional information

Funding

This project received funding from the European Union’s Horizon 2020 research and innovation programme under [grant agreement No 700699].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.