220
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Biological reconditioning of sodium enriched zeolite by halophytes: case study of dairy farm effluent treatment

, , , , &

References

  • Abdalla MA, Elkarim AHA, Taniguchi T, Endo T, Yamanaka N. 2017. Phytoremediation of calcareous saline-sodic soils with mesquite (Prosopis glandulosa). Acta Agr Scand B-S P Sci. 67(4):352–361. doi:10.1080/09064710.2017.1281432.
  • Assouline S, Russo D, Silber A, Or D. 2015. Balancing water scarcity and quality for sustainable irrigated agriculture. Water Resour Res. 51(5):3419–3436. doi:10.1002/2015WR017071.
  • Aydemİr S, Sünger H. 2011. Bioreclamation effect and growth of a leguminous forage plant (Lotus corniculatus) in calcareous saline-sodic soil. Afr J Biotechnol. 10(69):15571–15577.
  • Baets SD, Poesen J, Knapen A, Barberá GG, Navarro JA. 2007. Root characteristics of representative Mediterranean plant species and their erosion-reducing potential during concentrated runoff. Plant Soil. 294(1–2):169–183. doi:10.1007/s11104-007-9244-2.
  • Bergaya F, Lagaly G, Vayer M. 2013. Chapter 2.11 – cation and anion exchange. In: Bergaya F, Lagaly G, editors. Developments in clay science. Vol. 5. Amsterdam: Elsevier. p. 333–359. doi:10.1016/B978-0-08-098259-5.00013-5.
  • Blossfeld S, Gansert D, Thiele B, Kuhn AJ, Lösch R. 2011. The dynamics of oxygen concentration, pH value, and organic acids in the rhizosphere of Juncus spp. Soil Biol Biochem. 43(6):1186–1197. doi:10.1016/j.soilbio.2011.02.007.
  • Buhmann A, Papenbrock J. 2013. Biofiltering of aquaculture effluents by halophytic plants: basic principles, current uses and future perspectives. Environ Exp Bot. 92(Supplement C):122–133. doi:10.1016/j.envexpbot.2012.07.005.
  • Chen X, Cheng X, Zhu H, Bañuelos G, Shutes B, Wu H. 2019. Influence of salt stress on propagation, growth and nutrient uptake of typical aquatic plant species. Nord J Bot. doi:10.1111/njb.02411.
  • Cheng X, Zhu H, Bañuelos G, Yan B, Shutes B, Liang Y, Chen X. 2018. Saline-alkaline tolerance of hygrophilous plant species during their asexual propagation and continued growth stages. S Afr J Bot. 118:129–137. doi:10.1016/j.sajb.2018.07.005.
  • Edzwald JK, Haarhoff J. 2011. Seawater pretreatment for reverse osmosis: chemistry, contaminants, and coagulation. Water Res. 45(17):5428–5440. doi:10.1016/j.watres.2011.08.014.
  • FAO. 2018. More people, more food, worse water? A global review of water pollution from agriculture. Rome (Italy): Food and Agriculture Organization of the United Nations. http://www.fao.org/policy-support/resources/resources-details/en/c/1144303/.
  • Fatehi Pouladi S, Anderson BC, Wootton B, Rozema L. 2016. Evaluation of phytodesalination potential of vegetated bioreactors treating greenhouse effluent. Water. 8(6):233. doi:10.3390/w8060233.
  • Flowers TJ, Colmer TD. 2008. Salinity tolerance in halophytes. New Phytol. 179(4):945–963. doi:10.1111/j.1469-8137.2008.02531.x.
  • Freedman A, Gross A, Shelef O, Rachmilevitch S, Arnon S. 2014. Salt uptake and evapotranspiration under arid conditions in horizontal subsurface flow constructed wetland planted with halophytes. Ecol Eng. 70(Supplement C):282–286. doi:10.1016/j.ecoleng.2014.06.012.
  • Gal H. 2014, April. Dairy farm sewage – quality, tariffs and general rules for factory wastewaster. Caesarea: Israeli Dairy Growers Association Magazine. p. 369. http://www.icba.org.il/articles/0369/369.2014.07.pdf.
  • Gil R, Bautista I, Boscaiu M, Lidón A, Wankhade S, Sánchez H, Llinares J, Vicente O. 2014. Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB Plants. 6(0):plu049. doi:10.1093/aobpla/plu049.
  • Hendershot WH, Lalande H, Duquette M. 2006. Ion exchange and exchangeable cations. In Soil sampling and methods of analysis. Vol. 19. 2nd ed. Oxfordshire (UK): Taylor and Francis. p. 167–176.
  • Israeli Ministry of the Environment. 2010, June. Upgraded effluent quality standards. Sviva.Gov.Il. http://old.sviva.gov.il/bin/en.jsp?enPage=e_BlankPageandenDisplay=viewandenDispWhat=ObjectandenDispWho=Articals^l2092andenZone=Wastewater_Treatment.
  • Jesus JM, Cassoni AC, Danko AS, Fiúza A, Borges M-T. 2017. Role of three different plants on simultaneous salt and nutrient reduction from saline synthetic wastewater in lab-scale constructed wetlands. Sci Total Environ. 579:447–455. doi:10.1016/j.scitotenv.2016.11.074.
  • Jesus JM, Danko AS, Fiúza A, Borges M-T. 2015. Phytoremediation of salt-affected soils: a review of processes, applicability, and the impact of climate change. Environ Sci Pollut Res Int. 22(9):6511–6525. doi:10.1007/s11356-015-4205-4.
  • Kadlec RH, Wallace S. 2009. Treatment wetlands. Boca Raton (FL): CRC Press. http://www.crcnetbase.com/isbn/9781566705264.
  • Lata S, Singh PK, Samadder SR. 2015. Regeneration of adsorbents and recovery of heavy metals: a review. Int J Environ Sci Technol. 12(4):1461–1478. doi:10.1007/s13762-014-0714-9.
  • Levi N, Lavi R, Solomon A, Rytwo G. 2015, March 25. Treatment of dairy farm wastewater with integrated nanocomposite and aerated bacteriological cells. Dairy farm wastewater - now is the time to treat, Israel Water Association. http://israelwater.org.il/?page_id=354.
  • Liang Y, Zhu H, Bañuelos G, Yan B, Zhou Q, Yu X, Cheng X. 2017. Constructed wetlands for saline wastewater treatment: a review. Ecol Eng. 98:275–285. doi:10.1016/j.ecoleng.2016.11.005.
  • Litaor MI, Meir-Dinar N, Castro B, Azaizeh H, Rytwo G, Levi N, Levi M, MarChaim U. 2015. Treatment of winery wastewater with aerated cells mobile system. Environ Nanotechnol Monit Manage. 4:17–26. doi:10.1016/j.enmm.2015.03.001.
  • Litaor MI, Eshel G, Sade R, Rimmer A, Shenker M. 2008. Hydrogeological characterization of an altered wetland. J Hydrol. 349(3-4):333–349. doi:10.1016/j.jhydrol.2007.11.007.
  • Litaor MI, Schechter S, Zohar I, Massey MS, Ippolito JA. 2019. Making Phosphorus Fertilizer from Dairy Wastewater with Aluminum Water Treatment Residuals. Soil Sci Soc Am J. 83(3):649–657. doi:10.2136/sssaj2018.07.0278.
  • Ministry of Environmental Protection. 2017, November 16. Brines. http://www.sviva.gov.il/subjectsEnv/SeaAndShore/MarinePollutionLand/ProjectionSources/Pages/Brine.aspx.
  • Morteau, B. 2016. Salt contaminated water phytotreatment by constructed wetland. In: Khan M, Boër B, Özturk M, Clüsener-Godt M, Gul B, Breckle SW, editors. Sabkha Ecosystems. Tasks for Vegetation Science. Vol. 48. Cham: Springer. doi:10.1007/978-3-319-27093-7_14.
  • Muchate NS, Nikalje GC, Rajurkar NS, Suprasanna P, Nikam TD. 2016. Physiological responses of the halophyte Sesuvium portulacastrum to salt stress and their relevance for saline soil bio-reclamation. Flora. 224(Supplement C):96–105. doi:10.1016/j.flora.2016.07.009.
  • Orlofsky E, Bernstein N, Sacks M, Vonshak A, Benami M, Kundu A, Maki M, Smith W, Wuertz S, Shapiro K, et al. 2016. Comparable levels of microbial contamination in soil and on tomato crops after drip irrigation with treated wastewater or potable water. Agr Ecosys Environ. 215:140–150.
  • Qadir M, Oster JD. 2004. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Sci Total Environ. 323(1–3):1–19. doi:10.1016/j.scitotenv.2003.10.012.
  • Rabhi M, Ferchichi S, Jouini J, Hamrouni MH, Koyro H-W, Ranieri A, Abdelly C, Smaoui A. 2010. Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresour Technol. 101(17):6822–6828. doi:10.1016/j.biortech.2010.03.097.
  • Rabhi M, Hafsi C, Lakhdar A, Hajji S, Barhoumi Z, Hamrouni MH, Abdelly C, Smaoui A. 2009. Evaluation of the capacity of three halophytes to desalinize their rhizosphere as grown on saline soils under nonleaching conditions. Afr J Ecol. 47(4):463–468. doi:10.1111/j.1365-2028.2008.00989.x.
  • Ravindran KC, Venkatesan K, Balakrishnan V, Chellappan KP, Balasubramanian T. 2007. Restoration of saline land by halophytes for Indian soils. Soil Biol Biochem. 39(10):2661–2664. doi:10.1016/j.soilbio.2007.02.005.
  • Reddy KR, DeLaune RD. 2008. Biogeochemistry of wetlands: science and applications. Boca Raton (FL): CRC press. doi:10.1201/9780203491454.
  • Rivas Lucero BA, Gutiérrez M, Magaña Magaña JE, Márquez Salcido F, Márquez Fierro W. 2018. Salt content of dairy farm effluents as an indicator of salinization risk to soils. Soil Syst. 2(4):61. doi:10.3390/soilsystems2040061.
  • Ryan MH, Kaur P, Nazeri NK, Clode PL, Keeble-Gagnère G, Doolette AL, Smernik RJ, Aken OV, Nicol D, Maruyama H, et al. 2019. Globular structures in roots accumulate phosphorus to extremely high concentrations following phosphorus addition. Plant Cell Environ. 42(6):1987–2002. doi:10.1111/pce.13531.
  • Rytwo G. 2012. The use of clay-polymer nanocomposites in wastewater pretreatment. Sci World J. 2012:498503. doi:10.1100/2012/498503.
  • Rytwo G. 2014. Method for pretreatment of wastewater and recreational water with nanocomposites Patent No. US20140042100 A1. http://www.google.com/patents/US20140042100.
  • Shelef O, Gross A, Rachmilevitch S. 2012. The use of Bassia indica for salt phytoremediation in constructed wetlands. Water Res. 46(13):3967–3976.
  • Shilton AN, Elmetri I, Drizo A, Pratt S, Haverkamp RG, Bilby SC. 2006. Phosphorus removal by an ‘active’ slag filter-a decade of full scale experience. Water Res. 40(1):113–118. doi:10.1016/j.watres.2005.11.002.
  • Slama I, Ghnaya T, Savouré A, Abdelly C. 2008. Combined effects of long-term salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum. C R Biol. 331(6):442–451. doi:10.1016/j.crvi.2008.03.006.
  • Smith P, House JI, Bustamante M, Sobocká J, Harper R, Pan G, West PC, Clark JM, Adhya T, Rumpel C, et al. 2016. Global change pressures on soils from land use and management. Glob Chang Biol. 22(3):1008–1028. doi:10.1111/gcb.13068.
  • Ventura Y, Sagi M. 2013. Halophyte crop cultivation: the case for Salicornia and Sarcocornia. Environ Exp Bot. 92:144–153. doi:10.1016/j.envexpbot.2012.07.010.
  • Volik O, Petrone RM, Wells CM, Price JS. 2018. Impact of salinity, hydrology and vegetation on long-term carbon accumulation in a saline boreal peatland and its implication for peatland reclamation in the Athabasca oil sands region. Wetlands. 38(2):373–382. doi:10.1007/s13157-017-0974-5.
  • Wang D, Wang H, Han B, Wang B, Guo A, Zheng D, Liu C, Chang L, Peng M, Wang X. 2012. Sodium instead of potassium and chloride is an important macronutrient to improve leaf succulence and shoot development for halophyte Sesuvium portulacastrum. Plant Physiol Biochem. 51(Supplement C):53–62. doi:10.1016/j.plaphy.2011.10.009.
  • Wen J, Dong H, Zeng G. 2018. Application of zeolite in removing salinity/sodicity from wastewater: A review of mechanisms, challenges and opportunities. J Cleaner Prod. 197:1435–1446. doi:10.1016/j.jclepro.2018.06.270.
  • WWAP/UN-Water. 2018. The United Nations world water development report 2018: nature-based solutions for water. UNESCO. https://www.unwater.org/publications/world-water-development-report-2018/.
  • Zhang H, Zhang G, Lü X, Zhou D, Han X. 2015. Salt tolerance during seed germination and early seedling stages of 12 halophytes. Plant Soil. 388(1–2):229–241. doi:10.1007/s11104-014-2322-3.
  • Zhao X, Zhao Y, Wang W, Yang Y, Babatunde A, Hu Y, Kumar L. 2015. Key issues to consider when using alum sludge as substrate in constructed wetland. Water Sci Technol. 71(12):1775–1782. doi:https://doi.org/10.2166/wst.2015.138.
  • Zhu H, Bañuelos G. 2016. Influence of salinity and boron on germination, seedling growth and transplanting mortality of guayule: A combined growth chamber and greenhouse study. Ind Crops Prod. 92:236–243. doi:10.1016/j.indcrop.2016.07.027.
  • Zhu H, Bañuelos G. 2017. Evaluation of two hybrid poplar clones as constructed wetland plant species for treating saline water high in boron and selenium, or waters only high in boron. J Hazard Mater. 333:319–328. doi:10.1016/j.jhazmat.2017.03.041.
  • Zohar I, Ippolito JA, Bernstein Rose N, Litaor MI. 2020. Phosphorus pools in Al and Fe-based water treatment residuals (WTRs) following mixing with agro-wastewater — A sequential extraction study. Environ Technol Innovation. 18:100654. doi:10.1016/j.eti.2020.100654.
  • Zohar I, Ippolito JA, Massey MS, Litaor IM. 2017. Innovative approach for recycling phosphorous from agro-wastewaters using water treatment residuals (WTR). Chemosphere. 168:234–243. doi:10.1016/j.chemosphere.2016.10.041.
  • Zohar I, Massey MS, Ippolito JA, Litaor MI. 2018. Phosphorus sorption characteristics in aluminum-based water treatment residuals reacted with dairy wastewater: 1. Isotherms, XRD, and SEM-EDS analysis. J Environ Qual. 47(3):538–545. doi:10.2134/jeq2017.10.0405.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.