142
Views
12
CrossRef citations to date
0
Altmetric
Articles

Enhanced Immobilization of Cr(VI) in Soils by the Amendment of Rice Straw Char

, , &
Pages 505-518 | Published online: 08 Jun 2016
 

ABSTRACT

This study investigated the effect of rice straw char (RSC) on the immobilization of Cr(VI) in soils. The Cr(VI) sorption experiments on the RSC and RSC-amended soils were conducted using the batch method. RSC exhibited Cr(VI) reduction capacity due to its black carbon content. The addition of RSC to the soils enhanced the overall Cr(VI) immobilization of the soils, which is primarily attributed to the Cr(VI) reduction capacity of RSC. The effects of RSC amendment on the Cr(VI) sorption of the soils increased with increasing RSC content in the soils and decreased with increasing pH or anion contents in the soil solutions. After Cr(VI) was sorbed by the soils, a portion of the Cr(VI) was converted to Cr(III) and the remainder was sorbed onto the soils. The presence of RSC in the soils decreased the portion of sorbed Cr(VI) in the soils and therefore lowered the potential remobilization of Cr(VI) from the soils. The results suggested that RSC amendment can be applied to develop a cost-effective method for immobilizing Cr(VI) in polluted soils, thus lowering the environmental risk from Cr(VI) toxicity.

funding

This work was financially supported by the National Science Council of Taiwan ROC under Project Nos. NSC97-2313-B-005-024-MY3 and NSC100-2628-B-002-005-MY3, and by the Ministry of Education of Taiwan ROC under the ATU plan.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.