142
Views
12
CrossRef citations to date
0
Altmetric
Articles

Enhanced Immobilization of Cr(VI) in Soils by the Amendment of Rice Straw Char

, , &

References

  • Ajouyed, O., Hurel, C., Ammari, M., and Allal, L. B. 2010. Sorption of Cr(VI) onto natural iron and aluminum (oxy)hydroxides: Effects of pH, ionic strength and initial concentration. J. Hazard. Mater. 174, 616–622.
  • Apicella, B., Alfe, M., Barbella, R., Tregrossi, A., and Ciajolo, A. 2004. Aromatic structures of carbonaceous materials and soot inferred by spectroscopic analysis. Carbon 42, 1583–1589.
  • Barrett, E. P., Joyner, L. G., and Halenda, P. P. 1951. The determination of pore volume and area distributions in porous substances. I. Computation from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380.
  • Bartlett, R. J. 1991. Chromium cycling in soils and water: Links, gaps and methods. Environ. Health Persp. 92, 17–24.
  • Beesley, L., Moreno-Jimenez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., and Sizmur, T. 2011. A review of biochars' potential role in the remediation, revengetation and restoration of contaminated soils. Environ. Pollut. 159, 3269–3282.
  • Boehm, H. P. 2002. Surface oxides on carbon and their analysis: A critical assessment. Carbon 40, 145–149.
  • Choppala, G. K., Bolan, N. S., Megharaj, M., Chen, Z., and Naidu, R. 2012. The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. J. Environ. Qual. 41, 1175–1184.
  • Clesceri, L. S., Greenberg, A. E., and Eaton, A. D. 1998. Standard Methods for the Examination of Water and Wastewater, 20th edition, pp. 3–65–3–68, American Public Health Association, Washington, D.C.
  • Fendorf, S. E. 1995. Surface reactions of chromium in soils and waters. Geoderma 67, 55–71.
  • Fendorf, S. E., Eick, M. J., Grossl, P., and Sparks, D. L. 1997. Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environ. Sci. Technol. 31, 315–320.
  • Fukushima, M., Nakayasu, K., Tanaka, S., and Najamura, H. 1997. Speciation analysis of chromium after reduction of chromium (VI) by humic acid. Toxicol. Environ. Chem. 62, 207–215.
  • Garman, S. M., Luxton, T. P., and Eick, M. J. 2004. Kinetics of chromate adsorption on goethite in the presence of sorbed silicic acid. J. Environ. Qual. 33, 1703–1308.
  • Gee, G. W. and Bauder, J. W. 1986. Particle-size analysis. In: Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods, pp. 383–411 (Klute, A., Ed.), Soil Science Society of America, Madison, WI.
  • Gu, B. and Chen, J. 2003. Enhanced microbial reduction of Cr(VI) and U(VI) by different natural organic matter fractions. Geochim. Cosmochim. Acta 67, 3575–3582.
  • Haefele, S. M., Knoblauch, C., Gummert, M., Konboon, Y., and Koyama, S. 2009. Black carbon (biochar) in rice-based systems: Characterization and opportunities. In: Amazonian Dark Earths: Wim Sombroek's Vision, pp. 445–463 (Woods, W. I., Teixeira, W. G., Lehmann, J., Steiner, C., WinklerPrins, A. M. G. A., and Rebellato, L., Eds.), Springer, Dordrecht, The Netherlands.
  • Hinz, C. 2001. Description of sorption data with isotherm equations. Geoderma 99, 225–243.
  • Hseu, Z. Y., Su, S. W., Lai, H. Y., Guo, H. Y., Chen, T. C., and Chen, Z. S. 2010. Remediation techniques and heavy metal uptake by different rice varieties in metal-contaminated soils of Taiwan: New aspects for food safety regulation and sustainable agriculture. Soil Sci. Plant Nutrit. 56, 31–52.
  • Hsu, N. H., Wang, S. L., Lin, Y. C., Sheng, G. D., and Lee, J. F. 2009. Reduction of Cr(VI) by crop-residue-derived black carbon. Environ. Sci. Technol. 43, 8801–8806.
  • Jackson, M. L., Lim, C. H., and Zelazny, L. W. 1986. Oxides, hydroxides, and aluminosilicates. In: Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods, pp. 101–150 (Klute, A., Ed.), Soil Science Society of America, Madison, WI.
  • James, B. R. 1996. The challenge of remediating chromium-contaminated soil. Environ. Sci. Technol. 30, 248–251.
  • Jardine, P. M., Fendorf, S. E., Mayes, M. A., Larsen, I. L., Brooks, S. C., and Bailey, W. B. 1999. Fate and transport of hexavalent chromium in undisturbed heterogeneous soil. Environ. Sci. Technol. 33, 2939–2944.
  • Jiang, J., Xu, R., Wang, Y., and Zhao, A. 2008. The mechanism of chromate sorption by three variable charge soils. Chemosphere 71, 1469–1475.
  • Johnston, C. P. and Chrysochoou, M. 2014. Mechanisms of chromate adsorption on hematite. Geochim. Cosmochim. Acta 138, 146–157.
  • Kimbrough, D. E., Cohen, Y., Winer, A. M., Crelman, L., and Mabuni, C. 1999. A critical assessment of chromium in the environment. Crit. Rev. Environ. Sci. Technol. 29, 1–46.
  • Kotas, J. and Stasicka, Z. 2000. Chromium occurrence in the environment and methods of its speciation. Environ. Pollut. 107, 263–283.
  • Kozuh, N., Stupar, J., and Goreng, B. 2000. Reduction and oxidation processes of chromium in soils. Environ. Sci. Technol. 34, 112–119.
  • Kraepiel, A. M. L., Keller, K., and Morel, F. M. M. 1998. On the acid-base chemistry of permanently charged minerals. Environ. Sci. Technol. 32, 2829–2838.
  • Nelson, D. W. and Sommers, L. E. 1996. Total carbon, organic carbon, and organic matter. In: Methods of Soil Analysis. Part 3. Chemical Methods, pp. 961–1010 (Sparks, D. L., Ed.), Soil Science Society of America, Madison, WI.
  • Palmer, C. D. and Wittbrodt, P. R. 1991. Processes affecting the remediation of chromium-contaminated sites. Environ. Health Persp. 92, 25–40.
  • Perminova, I. V. and Hatfield, K. 2005. Remediation chemistry of humic substances: Theory and implication for technology. In: Use of Humic Substances to Remediate Polluted Environments: From Theory to Practices, pp. 3–36 (Perminova, I. V., Hatfield, K., and Hertkorn, N., Eds.). Springer, Dordrecht, The Netherlands.
  • Proctor, D. M., Finley, B. L., Harris, M. A., Paustenbach, D. J., and Rabbe, D. 1997. Chromium in soils: Perspectives in chemistry, health, and environmental regulation. J. Soil Contam. 6, 569–580.
  • Qafoku, N. P., Van Ranst, E., Noble, A., and Baert, G. 2004. Vairable charge soils: Their mineralogy, chemistry and management. Adv. Agron. 84, 159–215.
  • Radovic, L. R. and Bockrath, B. 2005. On the chemical nature of graphene edges: Origin of stability and potential for magnetism in carbon materials. J. Am. Chem. Soc. 127, 5917–5927.
  • Shen, Y. S., Wang, S. L., Tzou, Y. M., Yan, Y. Y., and Kuan, W. H. 2012. Removal of hexavalent Cr by coconut coir and derived chars—The effect of surface functionality. Bioresour. Technol. 140, 165–172.
  • Singh, B., Shan, Y. H., Johnson-Beebout, S. E., Singh, Y., and Buresh, R. J. 2008. Crop residue management for lowland rice-based cropping systems in Asia. Adv. Agron. 98, 117–199.
  • Summer, M. E. and Miller, W. P. 1996. Cation exchange capacity and exchange coefficients. In: Methods of Soil Analysis. Part 3. Chemical Methods, pp. 1201–1229 (Sparks, D. L., Ed.), Soil Science Society of America, Madison, WI.
  • Thomas, G. W. 1996. Soil pH and soil acidity. In: Methods of Soil Analysis. Part 3. Chemical Methods, pp. 475–490 (Sparks, D. L., Ed.), Soil Science Society of America, Madison, WI.
  • Tzou, Y. M., Wang, M. K., and Loeppert, R. H. 2003. Effect of phosphate, HEDTA, and light sources on Cr(VI) retention by goethite. Soil Sediment Contam. 12, 69–84.
  • Vasudevan, D., Cooper, E. M., and Van Exem, O. L. 2002. Sorption-desorption of ionogenic compounds at the mineral-water interface: Study of metal oxide-rich soils and pure-phase minerals. Environ. Sci. Technol. 36, 501–511.
  • Violante, A. 2013. Elucidating mechanisms of competitive sorption at the mineral/water interface. Adv. Agron. 118, 111–176.
  • Wang, X. S., Chen, L. F., Li, F. Y., CHen, K. L., Wan, W. Y., and Tang, Y. J. 2010. Removal of Cr(VI) with wheat-residue derived black carbon: Reaction mechanism and adsorption performance. J. Hazard. Mater. 175, 816–822.
  • Wittbrodt, P. R. and Palmer, C. D. 1995. Reduction of Cr(VI) in the presence of excess soil fulvic acid. Environ. Sci. Technol. 29, 255–263.
  • Wittbrodt, P. R. and Palmer, C. D. 1996. Reduction of Cr(VI) by soil humic acid. Eur. J. Soil Sci. 47, 151–162.
  • Yang, J. W., Guo, R. F., Chen, S. Q., and Li, L. T. 2008. Interaction between Cr(VI) and a Fe-rich soil in the presence of oxalic and tartaric acids. Environ. Geol. 53, 1529–1533.
  • Yoon, R. H., Salman, T., and Donnay, G. 1979. Predicting points of zero charge of oxides and hydroxides. J. Colloid Interface Sci. 70, 483–493.
  • Zhilin, D. M., Schmitt-Kopplin, P., and Perminova, I. V. 2004. Reduction of Cr(VI) by peat and coal humic substances. Environ. Chem. Lett. 2, 141–145.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.