180
Views
2
CrossRef citations to date
0
Altmetric
Articles

Study of the photocatalytic degradation of toluene over CdS-TiO2 nanoparticles supported on multi-walled carbon nanotubes by back propagation neural network

ORCID Icon, ORCID Icon &
Pages 246-254 | Received 21 Oct 2017, Accepted 27 Dec 2017, Published online: 05 Apr 2018
 

ABSTRACT

To optimize the photocatalytic conditions for the degradation of volatile organic compounds (VOCs), this study focused on the application of a back propagation (BP) neural network to determine the photocatalytic performance of CdS-TiO2 nanoparticles supported on multi-walled carbon nanotubes (MWCNTs) for toluene degradation. This was accomplished by first characterizing the photocatalyst using transmission electron microscopy (TEM), N2 adsorption-desorption, X-ray diffraction (XRD) and UV-visible absorption spectrum (UV-vis). It was observed that TiO2 and CdS particles were uniformly supported on the inner and outer walls of MWCNTs as a composite catalyst. Second, employing a test that included a training set and a prediction set, the results showed that the designed BP neural network exhibited a fast convergence speed and the system error was 0.0009702. Furthermore, the predictive values of the network were in good agreement with the experimental results, and the correlation coefficient was 0.9880. These results indicated that the network had an excellent training accuracy and generalization ability, which effectively reflected the performance of the system for the catalytic oxidation of toluene on a CdS-TiO2/MWCNTs photocatalyst.

Conflicts of interest

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Acknowledgments

This work was financially supported by Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control.

Additional information

Funding

This work was supported by the Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 906.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.