180
Views
2
CrossRef citations to date
0
Altmetric
Articles

Study of the photocatalytic degradation of toluene over CdS-TiO2 nanoparticles supported on multi-walled carbon nanotubes by back propagation neural network

ORCID Icon, ORCID Icon &
Pages 246-254 | Received 21 Oct 2017, Accepted 27 Dec 2017, Published online: 05 Apr 2018

References

  • Umar, I. G.; Abdul, H. A. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. A: Photochemistry Reviews. 2008, 9, 1–12.
  • Xing, M. Y.; Fang, W. Z.; Nasir, M.; Ma, Y. F.; Zhang, J. L.; Anpo, M. Self-doped Ti3+-enhanced TiO2 nanoparticles with a high-performance photocatalysis. J. Catal. 2013, 297, 236–243.
  • Liu, Z. Y.; Sun, D. D.; Guo, P.; Leckie, J. O. One-step fabrication and high photocatalytic activity of porous TiO2 hollow aggregates by using a low-temperature hydrothermal method without templates. Chemistry. 2007, 13, 1851–1855.
  • Jiang, W. J.; Liu, Y. F.; Wang, J.; Zhang, M.; Luo, W. J.; Zhu, Y. F. Separation-free polyaniline/TiO2 3D hydrogel with high photocatalytic activity. Adv. Mater. Interfaces. 2016, 3, 1–9.
  • Sun, Q.; Sun, X. M.; Dong, H. Z.; Dong, L. F. Copper quantum dots on TiO2: a high-performance, low-cost and nontoxic photovoltaic material. The 7th International Green Energy Conference & the 1st Dnl Conference on Clean Energy. 2012, 5, 16828.
  • Yamashita, H.; Harada, M.; Misaka, J.; Takeuchi, M.; Ikeue, K.; Anpo, M. Degradation of propanol diluted in water under visible light irradiation using metal ion implanted titanium dioxide photocatalysts. J. Photochem. Photobiol., A: Chemistry. 2002, 14, 257–261.
  • Molinari, R.; Borgese, M.; Drioli, E.; Schiavello, M. Hybrid processes-coup ling photocatalysis and membranes for degradation of organic pollutants in water. Catal. Today. 2002, 75, 77–85.
  • Kamat, P. V.; Meisel, D. Nanoparticles in advanced oxidation processes. Curr. Opin. Colloid Interface Sci. 2002, 7, 282–287.
  • Ren, L.; Li, Y. Z.; Hou, J. T.; Bai, J. L.; Mao, M. Y.; Zeng, M.; Zhao, X. J. The pivotal effect of the interaction between reactant and anatase TiO2 nanosheets with exposed {0 0 1} facets on photocatalysis for the photocatalytic purification of VOCs. Appl. Catal., B: Environmental. 2016, 181, 625–634.
  • Ji, J.; Xu, Y.; Huang, H. B.; He, M.; Liu, S. L.; Liu, G. Y.; Xie, R. J.; Feng, Q. Y.; Shu, Y. J.; Zhan, Y. J.; Fang, R. M.; Ye, X. G.; Leung, D. Y. C. Mesoporous TiO2 under VUV irradiation: enhanced photocatalytic oxidation for VOCs degradation at room temperature. Chem. Eng. J. 2017, 327, 490–499.
  • Duan, X. D.; Sun, D. Z.; Zhu, Z. B.; Chen, X. Q.; Shi, P. F. Photocatalytic decomposition of toluene by TiO2 film as photocatalyst. J Environ Sci Health B. 2002, 37, 679–692.
  • Zou, L. D.; Luo, Y. G.; Hooper, M.; Hu, E. Removal of VOCs by photocatalysis process using adsorption enhanced TiO2-SiO2 catalyst. Chem. Eng. Process. 2006, 45, 959–964.
  • Luo, Y.; Tai, W. S.; Seo, H. O.; Kim, K. D.; Kim, M. J.; Dey, N. K.; Kim, Y. D.; Choi, K. H.; Lim, D. C. Adsorption and photocatalytic decomposition of toluene on TiO2 surfaces. Catal. Lett.. 2010, 138, 76–81.
  • Jeong, M. G.; Park, E. J.; Seo, H. O.; Kim, K. D.; Kim, Y. D.; Lim, D. C. Humidity effect on photocatalytic activity of TiO2 and regeneration of deactivated photocatalysts. Appl. Surf. Sci. 2013, 271, 164–170.
  • Yong, S. W.; Jeon, J. W.; Lee, D. H.; Lee, M. G. Photocatalytic decomposition of toluene by a cylindrical UV reactor with helically installed TiO2-coated perforated planes. J. Chem. Eng. Jpn. 2017, 50, 589–594.
  • Asahi, R.; Morikawa, T.; Ohwaki, T.; Taga, Y. Visible-light photocatalysis in nitrogen-doped tatanium oxides. Science. 2001, 293, 269–271.
  • Irie, H.; Watanabe, Y.; Hashimoto, K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. J. Phys. Chem. B. 2003, 107, 5483–5486.
  • Karvinen, S.; Lamminmaki, R. J. Preparation and characterization of mesoporous visible-light-active anatase. Solid State Sci. 2003, 5, 1159–1166.
  • Vogel, R.; Hoyer, P.; Weller, H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J. Phys. Chem. 1994, 98, 3183–3188.
  • Kang, M. G.; Han, H. E. Enhanced Photodecomposition of 4-Chlorophenol in Aqueous Solution by Deposition of CdS on TiO2. J Photochem Photobiol A. 1999, 125, 119–125.
  • Jang, J. S.; Kim, H. G.; Joshi, U. A.; Jang, J. W.; Lee, J. S. Fabrication of CdS nanovires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation. Int. J. Hydrogen Energy. 2008, 33, 5975–5980.
  • Wang, Q.; Yang, D.; Chen, D. M.; Wang, Y. B.; Jiang, Z. Y. Synthesis of anatase titania-carbon nanotubes nanocomposites with enhanced photocatalytic activity through a nanocoating-hydrothermal process. J. Nanopart. Res. 2007, 9, 1087–1096.
  • Iijima, S. Helical microtubules of graphitic carbon. Nature. 1991, 354, 36–58.
  • Chen, W.; Pan, X. L.; Bao, X. H. Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes. J. Am. Chem. Soc. 2007, 129, 7421–7426.
  • An, G. M.; Ma, W. H.; Sun, Z. Y.; Liu, Z. M.; Han, B. X.; Miao, S. D.; Miao, Z. J.; Ding, K. L. Preparation of titania/carbon nanotube composites using supercritical ehtanol and their photocatalytic activity for phenol degradation under visible light irradiation. Carbon. 2007, 45, 1795–1801.
  • Aryal, S.; Kim, C. K.; Kim, K. W.; Khil, M. S.; Kim, H. Y. Multi-walled carbon nanotubes/TiO2 composite nanofiber by elecrospinning. Mater. Sci. Eng., C. 2008, 28, 75–79.
  • Huang, B. C.; Yang, Y.; Chen, X. S.; Ye, D. Q. Preparation and characterization of CdS-TiO2 nanoparticles supported on multi-walled carbon nanotubes. Catal. Commun. 2010, 11, 844–847.
  • Hou, Z. Y.; Dai, Q. L.; Wu, X. Q.; Chen, G. T. Artificial neural network aided design of catalyst for propane ammoxidation. Appl. Catal., A: General. 1997, 161, 183–190.
  • Jiang, L. The applications of GA-BP neural networks in option direction for catalytic agent. Appl. Mech. Mater. 2014, 510, 45–50.
  • Hattori, T.; Kito, S. Neural network as a tool for catalyst development. Catal. Today. 1995, 23, 347–355.
  • Palani, S.; Liong, S. Y.; Tkalich, P. An ANN application for water quality forecasting. Mar. Pollut. Bull. 2008, 56, 1586–1597.
  • Maier, H. R.; Jain, A.; Dandy, G. C.; Sudheer, K. P. Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ. Modelling & Softw. 2010, 25, 891–909.
  • Miao, Q.; Zhao, L.; Gao, A.; Liu, C.; Miao, S. Optimization design and application of water quality evaluation model based on BP neural network. International Conference on Bioinformatics and Biomedical Engineering IEEE, 2010, 1–5.
  • Rumelhart, D. E.; Hintont, G. E.; Williams, R. J. Learning representations by back-propagating errors. Nature. 1986, 323, 533–536.
  • Ju, L. C.; Tade, M. O.; Zhu, J. N. Use of BP neural network to predict hydrogen content in coal. IFAC Proceedings Volumes. 2004, 37, 685–689.
  • Ding, S. F.; Jia, W. K. An improved BP algorithm for system evaluation. J. Comput. Technol. 2012, 25, 103–108.
  • Fan, Y. G.; Piao, Z. D.; Chen, B. BP neural network set up the corrosion prediction model of low temperature parts of atmospheric pressure device. Mech. Eng. Mater. 2012, 152–154, 1138–1142.
  • Fan, Y. G.; He, M.; Lin, H. X.; Chen, B.; Zhou, S. P. BP neural network application research in petrochemical tower system corrosion prediction. Appl. Mech. Mater. 2014, 488–489, 487–491.
  • Chen, M. J. An improved BP neural network algorithm and its application. Appl. Mech. Mater. 2014, 543–547, 2120–2123.
  • Wang, C. M.; Wu, S. B.; Zhang, W. D.; Zhao, X. L. Process optimization based on artificial neural network of potassium hydroxide to preparing biodiesel. Appl. Mech. Mater. 2013, 263–266, 2225–2229.
  • Yang, Y.; Huang, B. C.; Ye, D. Q.; Chen, X. S. Characterization and photocatalytic performance of CdS-TiO2/MWCNTSs. Chin. J. Environ. Eng. 2010, 2, 398–402.
  • Ding, S. F.; Su, C. Y.; Yu, J. Z. An optimizing BP neural network algorithm based on genetic algorithm. Artif. Intell. Rev. 2011, 36, 153–162.
  • Zhang, X. W.; Zhou, M. H.; Lei, L. C. Co-deposition of photocatalytic Fe doped TiO2 coating by MOCVD. Catal. Commun. 2006, 7, 427–431.
  • Zhang, X. W.; Zhou, M. H.; Lei, L. C. Preparation of photocatalytic TiO2 coating of nanosized particles supported on activated carbon by AP-MOCVD. Carbon. 2005, 43, 1700–1708.
  • Yin, Y. H.; Wang, C. F.; Yan, M. Y. BP neural network in predicting the nano-titanium dioxide photocatalytic degradation of nitrotoluene wastewater. Chin. J. Explosives Propellants. 2011, 34, 86–90.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.